Archive

3 posts

Filters: tag: 6g Clear

Flora and fauna: how nonhuman species interact with natural and man-made EMF at ecosystem levels and public policy recommendations

Research PubMed: RF-EMF health Dec 8, 2025

This PubMed-listed article argues that ambient nonionizing EMF exposures (especially RF-EMF) have increased substantially over the past 60 years and are now pervasive, including from terrestrial networks and low-earth-orbit satellites. It claims these chronic, low-intensity exposures are biologically active and may disrupt critical functions in nonhuman species that rely on geomagnetic cues. The paper discusses nonhuman physiologies and proposes public policy recommendations for wildlife protection, including mitigation and creation of EMF-reduced zones during sensitive periods such as migration and breeding.

Flora and fauna: how nonhuman species interact with natural and man-made EMF at ecosystem levels and public policy recommendations

Research RF Safe Research Library Jan 1, 2025

This review discusses how increasing ambient nonionizing EMF (0–300 GHz), particularly RF from modern wireless technologies and satellites, may affect flora and fauna at ecosystem levels. It states that many nonhuman species rely on electro/magneto-reception and that even low-intensity EMF exposures are capable of disrupting critical biological functions and behaviors. The authors conclude that current exposure standards focus on human health and recommend policy reforms and mitigation measures to protect wildlife and ecosystems.

The modeling of the interaction of pulsed 5G/6G signals and the fine structure of human skin

Research RF Safe Research Library Jan 1, 2025

This paper uses advanced electromagnetic simulations of human skin microstructure to model exposure to realistic pulsed 5G/6G signals at 3.5, 27, 77, and 300 GHz. It reports localized, inhomogeneous absorption patterns linked to sweat glands and blood vessels, suggesting that treating skin as homogeneous may miss hotspots. The authors conclude that SAR-based standards may be inadequate for mmWave/sub-THz exposures and could underestimate potential risks, including possible nerve excitation.

Page 1 / 1