Archive
7 postsExposure to hexavalent chromium and 1800 MHz electromagnetic radiation can synergistically induce intracellular DNA damage in mouse embryonic fibroblasts
This PubMed-listed in vitro study tested whether 1800 MHz RF-EMF exposure can modify chemically induced DNA damage in mouse embryonic fibroblasts under standardized, non-thermal conditions. The authors report RF-EMF alone did not produce detectable DNA damage and did not significantly increase damage from hydrogen peroxide, 4-nitroquinoline-1-oxide, or cadmium. However, co-exposure with hexavalent chromium (Cr(VI)) was reported to synergistically increase DNA damage in the comet assay, which the authors interpret as possible selective exacerbation of Cr(VI)-induced genotoxicity requiring further investigation.
DNA Damage Analysis in Blood Tissue & Physiopathological Evaluation of the Effect of Quercetin on Kidney Tissue in 2600 MHz EMF Exposure
This rat study assessed 30-day 2600 MHz EMF exposure effects on kidney tissue and DNA damage in blood lymphocytes, with an EMF+quercetin group included. Kidney histopathology and immunohistochemistry were reported as similar across groups, and oxidative stress markers did not significantly change. The EMF-only group showed significant DNA damage in lymphocytes by Comet assay.
Development and Testing of a Novel Whole-body Exposure System for Investigative Studies of Radiofrequency Radiation in Rodents (NIEHS)
This NIEHS report describes the development and testing of a flexible whole-body radiofrequency radiation exposure system for rats and mice using updated signals relevant to wireless technologies. In 5-day studies with CDMA- and GSM-modulated signals, no visible behavioral responses were observed and comet assays reported no DNA damage in multiple tissues. The report notes technical challenges, particularly difficulty obtaining reliable body temperature measurements during exposure, and positions the system as a prototype for future mechanistic toxicology studies.
Oxidative stress and testicular damage induced by chronic exposure to 35.5 GHz millimeter wave radiation in male Wistar rats
This randomized controlled animal study examined chronic 35.5 GHz millimeter wave exposure in male Wistar rats (2 hours/day for 60 days) compared with control and sham groups. The exposed group showed reduced sperm count and viability along with testicular histopathological changes. Oxidative stress markers shifted toward increased lipid peroxidation and reduced antioxidant defenses, and comet assay results indicated increased DNA damage.
Genotoxic and histopathological effects of 6 GHz radiofrequency electromagnetic radiation on rat liver tissue
This animal experiment exposed adult male rats to 6 GHz RF-EMR (0.065 W/kg) for 4 hours/day over 42 days and compared them with sham controls. The exposed group showed higher comet assay genotoxicity metrics, though not statistically significant, and more prominent liver histopathological changes (e.g., portal inflammation and congestion). The authors conclude that 6 GHz exposure can cause histopathological and DNA-level changes in rat liver tissue under the studied conditions.
Toxicology and carcinogenesis studies in Sprague Dawley (Hsd:Sprague Dawley SD) rats exposed to whole-body radio frequency radiation at a frequency (900 MHz) and modulations (GSM and CDMA) used by cell phones
This National Toxicology Program technical report describes 900 MHz whole-body RFR exposures (GSM and CDMA) in male and female Sprague Dawley rats from in utero through up to 2 years. The report concludes clear evidence of carcinogenic activity in males for both modulations based on malignant schwannoma of the heart, with malignant glioma of the brain also reported as related to exposure. In females, the report concludes equivocal evidence of carcinogenic activity for both modulations based on selected tumor outcomes, and genetic toxicology findings were mixed with some comet assay increases/equivocal results but negative micronucleus assays.
Electromagnetic fields and DNA damage
This review discusses the comet assay and summarizes research on non-ionizing EMF exposure and DNA/chromosomal damage. It describes both positive and negative findings across studies, noting no consistent overall pattern for radiofrequency radiation (RFR). The authors nonetheless conclude that under certain exposure conditions RFR appears genotoxic and may affect DNA damage and repair, with evidence discussed as most applicable to exposures typical of cell phone use.