Archive

4 posts

Proteomic Characterization of Human Peripheral Blood Mononuclear Cells Exposed to a 50 Hz Magnetic Field

Research RF Safe Research Library Jan 1, 2025

This in vitro study compared proteomic profiles of PBMCs from three human donors after 24-hour exposure to a 50 Hz, 1 mT extremely low-frequency magnetic field versus unexposed cells. The abstract reports broad protein expression changes, including upregulation of proteins associated with metabolic processes and downregulation of proteins linked to T cell costimulation/activation and immune processes. No effects were observed on cell proliferation, viability, or cell cycle progression. The authors interpret the proteomic shifts as metabolic reprogramming with potential implications for immune regulation.

Effect of short-term extremely low-frequency electromagnetic field on respiratory functions

Research RF Safe Research Library Jan 1, 2025

This animal study tested whether short-term ELF-EMF exposure alters respiratory physiology in rats. Twenty Wistar albino rats were assigned to control or EMF exposure (50 Hz, 0.3 mT for 2 minutes) with respiratory parameters measured before, during, and after exposure. The study reports changes during exposure (lower respiratory rate and higher cycle duration, inspiration time, and tidal volume) but no differences after exposure, and it frames the findings as relevant to EMF safety and potential health risks.

Effect of electromagnetic field radiation on transcriptomic profile and DNA methylation level in pig conceptuses during the peri-implantation period

Research RF Safe Research Library Jan 1, 2025

This in vitro study exposed pig conceptuses (days 15–16 of pregnancy) to 50 Hz ELF-EMF for 2 hours and assessed transcriptomic and DNA methylation changes. The authors report altered expression of 21 protein-coding transcripts and an approximately 16-fold increase in genomic DNA methylation, with promoter methylation changes in several named genes. They conclude ELF-EMF interacts with gene expression and DNA methylation processes during early development and call for further safety research.

The Frequency of a Magnetic Field Determines the Behavior of Tumor and Non-Tumor Nerve Cell Models

Research RF Safe Research Library Jan 1, 2025

This in vitro study exposed glioblastoma (CT2A), neuroblastoma (N2A), and non-tumor astrocyte (C8D1A) cell models to a 100 μT magnetic field across 20–100 Hz for 24–72 hours. The abstract reports decreased viability and proliferation in the tumor cell models within a frequency window centered at 50 Hz, while astrocyte viability increased at 20 and 40 Hz. The authors conclude that frequency is a key determinant of cell-type-specific responses consistent with a “biological window” model.

Page 1 / 1