Archive
272 postsDual Evaluation and Spatial Analysis of RF-EMF Exposure in 5G: Theoretical Extrapolations and Direct Measurements
This exposure assessment study evaluated 5G RF-EMF exposure using both theoretical extrapolations and direct measurements in semiurban and urban settings, including a campus case study. Measured and extrapolated exposure levels were reported to be within ICNIRP recommended limits, even under high network data demand. The authors also report a strong correlation between theoretical and instantaneous field exposures, supporting the validity of their dual-method framework.
Assessment of 5G RF-EMF Exposure during Large-Scale Public Events via Field Measurements
This exposure-assessment study conducted field measurements of 5G downlink RF-EMF during a large public festival in Valencia, Spain, and compared them with a baseline day. Measurements covered 700 MHz and 3500 MHz bands across three network operators and five locations, using 6-minute and 30-minute durations. The study reports higher event-related power density (up to eightfold at 3500 MHz) but states that all measured levels remained well below international safety limits.
5G RF EMF Spectral Exposure Assessment in Four European Countries
This exposure assessment used 146 indoor and outdoor spot measurements in 2023 across Belgium, Switzerland, Hungary, and Poland to characterize 5G (3.6 GHz) and cumulative RF EMF incident power density in public spaces and educational institutions. Reported maximum 5G-specific incident power density was 10.4 mW/m2 (3.2% of the frequency-specific ICNIRP guideline), and all measured levels were stated to be well within ICNIRP limits. Rural areas showed significantly lower incident power density than urban areas, and LOS conditions had higher average incident power density than NLOS. The authors recommend continued reassessment as 5G coverage expands.
Assessment of spatial-average absorbed power density and peak temperature rise in skin model under localized electromagnetic exposure
This numerical dosimetry study modeled localized RF exposure (3–30 GHz) in multi-layer human skin constructs including skin, fat, and muscle, with an added synthetic blood vessel model. Vascular modeling had negligible impact on peak spatial-averaged absorbed power density and a modest impact on peak temperature rise (about 8% at 3 GHz, <3% above 6 GHz). The authors conclude that including vasculature can refine predictions of localized thermal distributions for dosimetry accuracy.
Combined effects of constant temperature and radio frequency exposure on Aedes mosquito development
This laboratory study tested combined effects of constant temperature and RF exposure on development of Aedes aegypti and Aedes albopictus from hatching to adult emergence. Temperature was reported as the primary determinant of developmental timing, with optimal development around 30 2 C. RF exposure (900 MHz and 18 GHz) was described as a secondary factor that could accelerate or prolong development depending on temperature, with synergistic shortening at 25 0 C and prolongation under suboptimal conditions.
Radiofrequency Electromagnetic Field Emissions and Neurodevelopmental Outcomes in Infants: A Prospective Cohort Study
This prospective cohort study followed 105 neonates/infants for one year and measured household RF-EMF using a selective radiation meter, categorizing exposure into tertiles. Higher household RF-EMF exposure was associated with lower ASQ-3 neurodevelopmental scores, particularly in motor and problem-solving domains, and higher odds of monitor/refer classifications for fine motor and problem-solving. The abstract notes these associations persisted after adjustment for low birth weight, though exposure was measured at a single time point and key confounders (e.g., prenatal phone use, parental interaction) were not assessed.
A scoping review and evidence map of radiofrequency field exposure and genotoxicity: assessing in vivo, in vitro, and epidemiological data
This scoping review and evidence map (PRISMA-ScR) summarizes over 500 studies on RF-EMF exposure and genotoxicity across in vitro, in vivo, and epidemiological research. The authors report a higher proportion of significant DNA damage findings in in vivo and epidemiological studies than in vitro studies, with DNA base damage commonly reported under real-world/pulsed/GSM talk-mode conditions and longer exposures. They conclude that DNA damage has been observed at exposure levels below ICNIRP limits and recommend precautionary measures and updates to guidelines to address potential non-thermal effects.
Building the gulf of opinions on the health and biological effects of electromagnetic radiation
This narrative article examines how opposing views formed regarding health and biological effects of electromagnetic radiation, focusing on ELF and RF exposures. It highlights historical controversies (e.g., childhood leukemia and ELF fields) and disputes over thermal versus non-thermal effects and reliance on SAR. The author argues that social and institutional factors, including industry influence, shaped interpretation and public discourse around EMF safety.
Impact of Radiofrequency Electromagnetic Fields on Cardiac Activity at Rest: A Systematic Review of Healthy Human Studies
This systematic review evaluated evidence on RF-EMF exposure and cardiac activity (heart rate and heart rate variability) in healthy humans at rest. Across 28 studies spanning 100 to 110,000 MHz and exposures from minutes to a week, most studies reported no significant effects on resting heart rate, and HRV findings were largely null under calm conditions. Some position-dependent HRV changes were reported, and the authors note possible effects during physiological challenges, but conclude evidence is insufficient for firm conclusions beyond resting healthy populations.
Comparative Analysis of Beamforming Techniques and Beam Management in 5G Communication Systems
This engineering paper reviews and classifies beamforming techniques in 5G New Radio and examines beam management procedures at Layer 1 and Layer 2. It analyzes the spectral spectrogram of Synchronization Signal Blocks (SSBs) to illustrate how configuration parameters influence spectral occupancy and synchronization-related performance in different deployment scenarios, including FR2. The work is framed as technical optimization, with only a general note that such knowledge may inform safety considerations related to EMF exposure.
Numerical Analysis of Human Head Exposure to Electromagnetic Radiation Due to 5G Mobile Phones
This conference paper uses numerical simulations to evaluate near-field exposure and thermal effects in a detailed human head model from a realistic 5G mobile phone operating at 26 GHz. The preliminary modeling suggests moderate, localized temperature increases in superficial tissues. The authors emphasize the need for higher-resolution models, refined tissue segmentation, longer exposure durations, and varied phone placements to better characterize potential impacts.
Temporal change of outdoor RF-EMF levels in four European countries: a microenvironmental measurement study
This microenvironmental measurement study assessed temporal trends in outdoor RF-EMF exposure between 2016 and 2023 in the Netherlands, Switzerland, Belgium, and Spain using harmonized walking-route measurements with exposimeters. The authors report no significant change in mobile base station (downlink) exposure between 2016 and 2023 and no consistent trend across microenvironments or countries. Reported median downlink exposure values ranged from 0.11 mW/m² (Switzerland, 2023) to 0.62 mW/m² (Netherlands, 2018).
Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies
This study uses anatomically detailed computational models of a five-year-old girl, a pregnant woman in the third trimester, and a fetus to simulate mobile phone RF exposure inside an elevator cabin. Simulations at 1000 MHz and 1800 MHz across 48 configurations evaluated SAR10g, whole-body SAR, and maximum temperature. The abstract reports that configuration (positioning and phone orientation) can substantially change absorption and temperature metrics and calls for broader scenario testing to inform safety guidance for vulnerable populations.
Comparison Between Broadband and Personal Exposimeter Measurements for EMF Exposure Map Development Using Evolutionary Programming
This exposure-assessment study compares RF-EMF exposure maps produced using a broadband meter versus a personal exposimeter and aims to correct personal exposimeter readings to match broadband-based maps. The authors report that LOS/NLOS-specific correction factors reduce discrepancies, particularly improving LOS measurements affected by body shielding. A genetic algorithm is used to optimize correction factors and support scalable urban exposure mapping, with the authors noting that additional validation in other environments is needed.
Machine Learning Approach for Ground-Level Estimation of Electromagnetic Radiation in the Near Field of 5G Base Stations
This paper presents a machine-learning method to estimate ground-level electromagnetic radiation (electric field strength) in the near field of 5G base stations, using multiple technical and environmental input parameters. The authors report experimental performance with a mean absolute percentage error of about 5.89% and suggest the approach can reduce costs compared with on-site measurements. The work is positioned as supporting exposure management and base-station placement, while noting the need for careful EMF management due to potential health-risk links.
Cluster Analysis of RF-EMF Exposure to Detect Time Patterns in Urban Environment: A Model-Based Approach
This paper applies a model-based clustering approach (Log-Normal Mixture Model) to continuous RF-EMF monitoring data from the Serbian EMF RATEL network in Novi Sad to characterize temporal exposure patterns. The analysis reports separation of night versus day exposure values and identification of daytime periods where exposure persists longer. The work is positioned as supporting improved understanding of when and where elevated exposures occur in urban environments.
Weak Radiofrequency Field Effects on Biological Systems Mediated through the Radical Pair Mechanism
This 2025 review examines claims of biological effects from weak, nonthermal RF magnetic fields and evaluates whether such effects could be mediated by the radical pair mechanism (RPM). It reports that aligning RPM theory with low-level experimental observations remains difficult and that many experimental findings are limited by reproducibility, statistical robustness, and dosimetry issues. The authors conclude a tangible but incompletely understood link may exist and emphasize the need for more rigorous, standardized, interdisciplinary work.
Standards: Exposure Limits for Brief High Intensity Pulses of Radiofrequency Energy Between 6 and 300 GHz
This standards-focused paper evaluates ICNIRP and IEEE (C95.1-2019) exposure limits for brief, high-intensity pulsed RF-EMF between 6 and 300 GHz, particularly when exposures vary within the 6-minute averaging window. Using numerical and analytical modeling with a one-dimensional thermal tissue model, it reports differences in protection against transient skin heating, with IEEE described as more conservative than ICNIRP. The authors propose an adjustment to pulse fluence limits to improve consistency of protection and note that nonthermal and thermoacoustic effects were not analyzed.
Genotoxic and histopathological effects of 6 GHz radiofrequency electromagnetic radiation on rat liver tissue
This animal experiment exposed adult male rats to 6 GHz RF-EMR (0.065 W/kg) for 4 hours/day over 42 days and compared them with sham controls. The exposed group showed higher comet assay genotoxicity metrics, though not statistically significant, and more prominent liver histopathological changes (e.g., portal inflammation and congestion). The authors conclude that 6 GHz exposure can cause histopathological and DNA-level changes in rat liver tissue under the studied conditions.
Radiofrequency electromagnetic fields reduce bumble bee visitation to flowers
This blinded, two-year study examined whether RF-EMF exposure at 2.4 and 5.8 GHz affects pollinator visitation to Salvia and Lavandula. The authors report no significant effect on honey bee visitation rates. They report a significant reduction in bumble bee visits per observation period under RF-EMF exposure, which they frame as a potential risk warranting further long-term research.
13.56 MHz RFID Module - From Application to Process Modelling and Effects on Human Health
This paper presents an application and numerical process modelling of a 13.56 MHz RFID module, including how nearby tags/cards and their positioning affect antenna characteristics. It also considers RFID operation near human tissues and discusses potential health impacts from prolonged EMF exposure at 13.56 MHz. The authors emphasize the importance of evaluating long-term exposure risks and call for additional scientific attention.
Greater prevalence of symptoms associated with higher exposures to mobile phone base stations in a hilly, densely populated city in Mizoram, India
This cross-sectional study compared 183 higher-exposed residents with 126 matched reference residents and assessed symptoms via questionnaire alongside in-home RF-EMF power density measurements from mobile phone base stations. Higher exposure (including proximity within 50 m and power densities of 5–8 mW/m2) was reported to be associated with increased symptom prevalence across mood-energy, cognitive-sensory, inflammatory, and anatomical categories. The authors conclude that current public exposure limits may be inadequate for long-term, non-thermal biological impacts and call for precautionary policy updates.
5G Radio-Frequency-Electromagnetic-Field Effects on the Human Sleep Electroencephalogram: A Randomized Controlled Study in CACNA1C Genotyped Volunteers
This randomized, double-blind, sham-controlled study tested whether CACNA1C rs7304986 genotype modifies sleep EEG responses to 5G RF-EMF exposure. The authors report a genotype-by-exposure interaction, with 3.6 GHz exposure in T/C carriers associated with a faster NREM sleep spindle center frequency versus sham. The abstract also notes longer sleep latency in T/C compared with T/T carriers, and concludes that genetically susceptible groups may show differential physiological responses to 5G RF-EMF.
Exposure to radiofrequency electromagnetic fields and IARC carcinogen assessment: Risk of Bias preliminary literature assessment for 10 key characteristics of human carcinogens
This review examined experimental literature on whether RF-EMF exposures within ICNIRP (2020) limits affect IARC key characteristics of human carcinogens. It identified 159 articles and found that 38% of in vitro/in vivo measurements reported statistically significant effects, but higher study quality was associated with fewer reported effects and there was no consistent exposure-response pattern. The authors state that study diversity and generally poor quality prevent high-confidence conclusions for most key characteristics, while recommending replication of the few higher-quality positive findings under stringent standards.
Does Electromagnetic Pollution in the ART Laboratory Affect Sperm Quality? A Cross-Sectional Observational Study.
This cross-sectional observational study assessed sperm motility after one hour of in vitro exposure of semen samples to EMFs from different laboratory sources in an IVF setting. It reports a statistically significant reduction in progressive sperm motility after exposure to mobile phones and Wi-Fi repeaters, while other EMF-emitting equipment showed no significant effect. The authors interpret the findings as indicating a potential negative impact of specific RF sources and call for further research, alongside practical mitigation suggestions in IVF laboratories.