Archive
217 postsRadiofrequency radiation from mobile phones and the risk of breast cancer: A multicenter case-control study with an additional suspected comparison group
This multicenter case-control study in Iran (n=226) examined associations between mobile phone use and breast cancer outcomes in women. Reporting more than 60 minutes/day of phone conversations was associated with higher odds of confirmed invasive breast cancer and of being classified as a suspected case versus <10 minutes/day. The authors emphasize that the results do not establish causation and may be influenced by self-reported exposure and residual confounding, warranting cautious interpretation.
No Measurable Impact of Acute 26 GHz 5G Exposure on Salivary Stress Markers in Healthy Adults
This triple-blind randomized study tested whether 26.5 minutes of 26 GHz (5G) RF exposure at environmental-like levels alters salivary stress biomarkers in healthy adults. Salivary cortisol and alpha-amylase measured before, during, and after exposure did not differ between real and sham conditions. An exploratory subgroup with frequent sampling also showed biomarker stability over time. The study addresses acute exposure only and notes the need for research on repeated or long-term exposures and vulnerable groups.
NTP Lite: The Japan-Korea Collaborative RF Exposure Toxicity Project [Health Matters]
This magazine article reviews the Japan-Korea "NTP Lite" RF animal toxicity collaboration and its relationship to prior NTP (2018) and Ramazzini Institute reports of RF-associated tumors in male rats. It notes NTP Lite used a single whole-body SAR of 4 W/kg and completed a two-year exposure phase in 2022, but final reporting is delayed with histopathology and genotoxicity work ongoing. The author highlights protocol harmonization across labs while raising concerns about unexplained animal deaths and physiological differences in exposed groups, and frames the broader evidence as supportive of RF-related cancer risk in laboratory animals.
Acoustic Pressures in the Head From Pulsed Microwaves: Can They Explain "Anomalous" Health Incidents? (Havana syndrome)
This article reviews the microwave auditory effect (perceived clicks/buzzing) that can occur when the head is exposed to pulsed microwave energy, such as from radar. It explores whether this phenomenon could plausibly explain reported “anomalous health incidents” (Havana syndrome), noting that experts and formal panels have suggested it as a possible explanation. The authors emphasize that potential links between pulsed microwave exposures, audible sensations, and other physiological impacts warrant careful consideration and further research.
Millimeter-wave high frequency 5G (26 GHz) electromagnetic fields do not modulate human brain electrical activity
This randomized, triple-blind crossover study examined whether 26 GHz (5G millimeter-wave) exposure affects human EEG activity. Thirty-one healthy young adults completed real and sham 26.5-minute exposures at 2 V/m, with EEG recorded before, during, and after exposure. The study reports no significant effects of exposure on delta, theta, alpha, or beta band power across electrode clusters, providing preliminary reassurance under the tested conditions.
Assessment of Electromagnetic Field Exposure from Multiple Sources Simultaneously in the High- Frequency Range Based on Safety Standards
This conference paper proposes a method to assess combined EMF exposure from multiple simultaneous high-frequency sources using a normalized exposure ratio based on ICNIRP 2020 guidelines. It emphasizes a current gap in standardized absorbed power density (Sab) measurement above 10 GHz and proposes incident power density (Sinc) as a temporary surrogate. The work is framed as supporting compliance verification and safety measure design, with a stated need for future experimental validation and standardization.
Model Variability in Assessment of Human Exposure to Radiofrequency Fields
This review examines how variability in computational dosimetry models affects assessment of human RF exposure from MHz to terahertz frequencies, focusing on SAR, absorbed power density, and temperature rise. It reports that anatomical scaling and model choices can drive meaningful differences in predicted SAR (including higher values in children/smaller models), while temperature-rise predictions are especially sensitive to thermophysiological parameters and vascular modeling. The authors indicate that computed variability remains within ICNIRP/IEEE safety margins but argue that uncertainties warrant ongoing research and refinement as new technologies (e.g., 6G) emerge.
Behaviour and reproduction of Drosophila melanogaster exposed to 3.6 GHz radio-frequency electromagnetic fields
This animal study assessed whether 3.6 GHz RF-EMF exposure affects behaviour and reproduction in adult Drosophila melanogaster, using micro-CT-based digital-twin dosimetry and numerical simulations. It reports no significant changes in locomotor activity after 5 days at 5.4–9 V/m and no effect on fecundity over 48 hours at the tested absorbed power. The authors note that effects could still be possible at other exposure levels or in different developmental stages.
From adults to offspring: Wi-Fi RF-EMR exposure in adult zebrafish impairs reproduction and transgenerationally effects development and behavior of progeny
This animal study examined Wi-Fi RF-EMR exposure in adult zebrafish (4 hours/day for 30 days) and assessed reproductive tissues and offspring outcomes. The abstract reports testicular and ovarian histopathological abnormalities in exposed adults. Offspring from exposed parents, maintained under EMF-free conditions, reportedly showed increased mortality, morphological abnormalities, and anxiety-like behavior, with malformations increasing with longer parental exposure.
Electrical oscillations in microtubules
This study introduces a multi-scale electrokinetic model to characterize electrical impulses and ionic current propagation along microtubules, incorporating atomistic protein details and biological environments. It emphasizes nanopore-mediated coupling between microtubule surfaces as a key mechanism enabling luminal currents, energy transfer, amplification, and oscillatory dynamics. The authors report pharmacological inhibition experiments (Taxol and Gd3+) supporting the interpretation that nanopores function as active nanogates contributing to transistor-like behavior.
Role of visual and non-visual opsins in blue light-induced neurodegeneration in Drosophila melanogaster
This animal study used Drosophila knockout lines to examine whether visual (Rh1) versus non-visual (Rh7) opsins contribute to blue-light-associated neural damage. Flies were continuously exposed to 488 nm blue light from egg deposition to 20 days, and brain DNA damage and vacuolisation were assessed. The study reports greater DNA damage and neurodegeneration markers in Rh1 knockout flies than in wild-type or Rh7 knockout flies, and concludes Rh1 is a predominant mediator of blue-light-induced neurotoxicity in the fly CNS.
Transition Pathways Towards Electromagnetic Sustainability in the Built and Lived Environment
This paper discusses electromagnetic (EM) fields as an environmental health and sustainability issue in the built and lived environment, particularly with expanding ICT and energy systems. It reports conducting a literature review and EM field audits in three locations across two cities in Canada and the UK to examine exposure trends and review major safety guidelines. The authors propose transition pathways toward “electromagnetic sustainability,” emphasizing planning, exposure reduction, and risk governance.
Brain Tumor and Mobile Phone Risk Among Young People: Analysis of Japanese People Using the MOBI-Kids International Case-Control Study
This Japanese case-control study within the MOBI-Kids framework examined mobile phone use and brain tumor risk among people aged 10–29 years in the Kanto region. Using logistic regression adjusted for age and sex, it reports no increased brain tumor risk associated with mobile phone use, including analyses considering weighted output power and technical characteristics. The authors highlight possible recall bias and limited power in sub-analyses and recommend ongoing research as wireless technologies change.
The Influence of Mobile Technologies on the Quality of Sleep
This study assessed whether sleeping with versus without a mobile phone (two-week intervals) affects sleep in medical students, using smartwatch-based monitoring. It reports no statistically significant differences in sleep quality or time spent in wakefulness, REM, light, or deep sleep between conditions. The authors report a statistically significant effect on minimum and average blood oxygen saturation during sleep and call for further research on nightly RF-EMF exposure.
Male Reproductive and Cellular Damage After Prenatal 3.5 GHz Radiation Exposure: One-Year Postnatal Effects
This animal study examined whether prenatal exposure to 3.5 GHz radiofrequency radiation (2 hours/day) affects male reproductive outcomes later in life. Male rat offspring assessed at 12 months showed multiple adverse testicular and cellular findings in exposed groups versus sham controls, including impaired spermatogenesis markers, increased abnormal sperm morphology, increased DNA damage, and increased apoptosis, with full-gestation exposure generally most pronounced. The authors interpret the results as evidence of persistent reproductive toxicity from prenatal exposure and call for further mechanistic work and precautionary actions.
Effect of Electromagnetic Field on Oral Tissues: A Narrative Review
This narrative review explores potential links between EMF exposure, metallic or mixed-metal dental restorations, and reported systemic and neurological symptoms despite normal diagnostic findings. It discusses hypothesized quantum-biological mechanisms (including spin dynamics and radical-pair mechanisms) that could mediate interactions between EMFs and dental metals. The authors conclude that the complexity of these interactions warrants more rigorous research and emphasize that a possible health-risk link should not be ignored.
Electromagnetic Field Stimulation Effects on Intrinsically Disordered Proteins and Their Role in Aging and Neurodegeneration
This review discusses preclinical studies suggesting non-ionizing EMF exposures can produce beneficial biological effects, while noting ongoing controversy about mechanisms. It reports evidence of EMF-associated conformational changes in intrinsically disordered proteins relevant to neurodegeneration and describes RF exposure conditions that activate proteostasis and autophagy in cell and animal models. The authors propose a quantum-biophysical framework involving the water-protein interface and suggest potential human applications within regulatory safety thresholds.
Empowering the Serbian EMF RATEL System for Monitoring RF-EMF Through Drive Test
This engineering/monitoring paper describes enhancements to the Serbian EMF RATEL system, which has continuously monitored RF-EMF since 2017, by adding drive test functionality to improve spatial coverage. The authors report preliminary quantitative drive test measurements and validation of the upgraded approach. The work emphasizes that characterizing spatial and temporal RF-EMF patterns can support exposure assessment relevant to public health risk evaluation.
Thermal and SAR-Based Limits for Human Skin Exposed to Terahertz Radiation
This conference paper uses COMSOL Multiphysics simulations to evaluate thermal and SAR-based exposure limits for modeled human skin exposed to terahertz radiation (0.1–5 THz). The authors report negligible temperature increases at power densities consistent with keeping SAR below 1.6 W/kg, but note that higher power densities can yield minimal heating while producing SAR values above recognized safety thresholds. They conclude that existing sub-THz standards are not directly transferable to the full THz band and call for updated guidelines, especially for prolonged exposure.
Electromagnetic Interference in the Modern Era: Concerns, Trends, and Nanomaterial-Based Solutions
This review surveys the evolution, sources, and consequences of electromagnetic interference (EMI) in modern environments shaped by IoT, 5G, and smart devices. It discusses disruptions to electrical and medical devices, ecological impacts on wildlife, and potential risks to human health from EMI exposure. The paper emphasizes mitigation via advanced shielding materials, highlighting carbon-based nanomaterials as promising solutions.
The WHO-commissioned systematic reviews on health effects of radiofrequency radiation provide no assurance of safety
This paper evaluates and critiques 12 WHO-commissioned systematic reviews and meta-analyses on RF-EMF health effects across outcomes including cancer and reproductive endpoints. It argues that serious methodological flaws and limitations in the WHO reviews prevent them from providing assurance of safety for cell phones and other wireless devices. The authors highlight reported evidence in the animal cancer review (high certainty for heart schwannomas; moderate certainty for brain gliomas) and describe dose-related adverse effects on male fertility and reproductive outcomes, including at exposure levels below current ICNIRP thresholds.
Review of the evidence on the influence of Wi-Fi 2.4 GHz radiation on oxidative stress and its possible relationship with Alzheimer's disease
The review states there is no scientific consensus on whether Wi‑Fi (2.4/5 GHz) contributes to Alzheimer's disease through oxidative stress, and that existing results are mixed and inconclusive. It discusses an indirect analysis linking oxidative-stress-responsive genes after 2.4 GHz exposure with genes associated with Alzheimer's disease. The authors suggest chronic exposure could affect regulation of neurodegeneration-related genes (e.g., GSK3B, APOE), while emphasizing that a direct relationship has not been demonstrated and more research is needed.
Experience of Polish Physicians on Electromagnetic Hypersensitivity
This cross-sectional questionnaire study surveyed 355 Polish physicians about EMF health effects and electromagnetic hypersensitivity (EHS). Physicians reported limited knowledge and low familiarity with WHO guidance for managing people who believe they are hypersensitive to EMF, though most were willing to learn more. Many physicians reported encountering patients attributing symptoms to EMF, which the authors frame as highlighting a need for improved physician education and reliable public information.
Causal relationship between the duration of mobile phone use and risk of stroke: A Mendelian randomization study
This Mendelian randomization study assessed whether duration of mobile phone use is causally related to stroke outcomes using GWAS-derived SNP instruments. The inverse-variance weighted analysis reported a significant increased risk for large artery atherosclerosis (LAAS) with longer mobile phone use duration, while other stroke outcomes showed no significant associations. Sensitivity analyses (including MR-Egger and heterogeneity/asymmetry tests) were reported as suggesting the LAAS finding was robust.
3.5GHz radiofrequency electromagnetic fields (RF-EMF) on metabolic disorders in Drosophila melanogaster
This animal study used metabolomics to assess metabolic changes in male Drosophila melanogaster exposed to 3.5 GHz RF-EMF at 0.1, 1, and 10 W/m². It reports disruptions in four metabolic pathways and 34 differential metabolites, with significant decreases in several metabolites including GABA, glucose-6-phosphate, and AMP. The authors interpret the findings as suggesting RF-EMF-related metabolic disturbance, while noting no clear dose-dependent pattern.