Archive
114 postsEffects of radiofrequency electromagnetic field exposure on cancer in laboratory animal studies, a systematic review
This systematic review evaluated RF EMF exposure and cancer outcomes in experimental animals, including chronic cancer bioassays and tumor-promotion designs. Across 52 included studies, the authors report high certainty of evidence for increased malignant heart schwannomas and gliomas in male rats, and moderate certainty for increased risks of several other tumor types. Many other organ systems showed no or minimal evidence of carcinogenic effects, and the authors note challenges in translating animal findings to human risk assessment due to exposure and mechanistic uncertainties.
Effects of Mobile Electromagnetic Exposure on Brain Oscillations and Cortical Excitability: Scoping Review
This scoping review evaluates evidence on mobile phone electromagnetic exposure and its effects on brain oscillations and cortical excitability in healthy individuals. Across 78 EEG studies (and 2 TMS studies), the authors report that exposure may be linked to changes in neural activity, including increased amplitudes in several EEG bands and possible changes in cortical silent period. However, substantial methodological inconsistency across studies limits firm conclusions, and the review highlights limited evidence for 5G/mmWave exposures and argues for precaution and potential guideline revision.
Use of Mobile and Cordless Phones and the Association with Prostate Cancer
This pooled analysis of two prior human studies reports increased odds of prostate cancer associated with mobile phone use, with higher estimates for longer latency and higher cumulative hours. Cordless phone use is reported to show increased risk but not statistically significant overall, with one mid-range cumulative use category showing an elevated OR. The abstract also reports higher risks among men with more aggressive prostate cancer and among those with a family history of prostate cancer.
Could electrohypersensitivity be a specific form of high sensory processing sensitivity?
This cross-sectional questionnaire study (n=100) examined whether electrohypersensitivity (EHS) overlaps with high sensory processing sensitivity (HSPS). A higher proportion of HSPS was observed among those reporting EHS symptoms, alongside significant differences in anxiety/depression symptomatology and EMF-related risk perception and avoidance strategies. The authors interpret the results as supporting an association between EHS and HSPS, while noting that this does not establish whether EM radiation directly causes EHS symptoms.
RF-EMF exposure assessment with add-on uplink exposure sensor in different microenvironments in seven European countries
This exposure assessment study introduces a cost-efficient add-on sensor attached to a smartphone to quantify auto-induced uplink RF-EMF transmission across 100–6000 MHz in multiple microenvironments. Activity-based surveys were conducted in seven European countries under non-user, maximum downlink, and maximum uplink scenarios. Reported power levels were lowest for non-user scenarios and higher during active use, with variation by country, urbanization, and setting. The authors frame the work as supporting future epidemiological research and planned validation against other tools.
The Frequency of a Magnetic Field Determines the Behavior of Tumor and Non-Tumor Nerve Cell Models
This in vitro study exposed glioblastoma (CT2A), neuroblastoma (N2A), and non-tumor astrocyte (C8D1A) cell models to a 100 μT magnetic field across 20–100 Hz for 24–72 hours. The abstract reports decreased viability and proliferation in the tumor cell models within a frequency window centered at 50 Hz, while astrocyte viability increased at 20 and 40 Hz. The authors conclude that frequency is a key determinant of cell-type-specific responses consistent with a “biological window” model.
Extremely low frequency magnetic field distracts zebrafish from a visual cognitive task
This animal study trained adult zebrafish to perform a conditioned avoidance response to a visual cue. The visual cue was presented alone or together with an extremely low frequency sinusoidally changing magnetic field (0.3 Hz) at 0.015 mT or 0.06 mT. The abstract reports that the 0.06 mT magnetic field condition impaired learning performance and response behavior, suggesting a cross-modal distraction effect.
Sensation of electric fields in the Drosophila melanogaster larva
This animal study reports that Drosophila melanogaster larvae can sense electric fields and exhibit robust electrotaxis toward the cathode in controlled environments. The authors identify head-tip sensory neurons required for this behavior and report calcium-imaging evidence that Gr66a-positive neurons encode field strength and orientation. The work supports electrosensation as a functional sensory modality in Drosophila larvae and demonstrates measurable neural and behavioral responses to electric fields under the studied conditions.
Prospective cohort study on non-specific symptoms, cognitive, behavioral, sleep and mental health in relation to electronic media use and transportation noise among adolescents (HERMES): study protocol
This protocol describes the third wave of the HERMES prospective adolescent cohort in Switzerland, with follow-up every four months and at one year. The study will assess electronic media use, modeled RF-EMF and transportation noise exposures, and a range of outcomes including cognition, behavior, sleep, mental health, and non-specific symptoms. A subsample will undergo personal RF-EMF measurements and accelerometer-based sleep/physical activity tracking.
The Impact of Mobile Phone Electromagnetic Waves on the Neurons and Blood Brain Barrier Integrity in the Chick Embryo
This animal study exposed chick embryos to electromagnetic waves from a mobile phone and compared them with unexposed controls. Electron microscopy on days 10 and 15 reported neuronal and cerebellar cellular alterations in the exposed group, including features described as apoptosis and mitochondrial swelling. The authors also report compromised blood-brain barrier integrity and conclude the exposure adversely affects brain development.
Role of radio-frequency electromagnetic waves in causing oxidative stress
This animal study exposed fertilized chick eggs to a nearby 1800 MHz mobile phone that was called repeatedly (50 minutes/day) and assessed embryos at days 10 and 15. The exposed group reportedly showed mitochondrial abnormalities in liver, brain, and heart tissues on electron microscopy, along with increased HSP70 in cardiomyocytes and hepatocytes. The authors conclude that radio-frequency electromagnetic waves can induce oxidative stress and mitochondrial damage in developing embryos.
Temporal Change of Outdoor Rf-Emf Levels Four in European Countries: A Microenvironmental Measurement Study
This microenvironmental measurement study assessed temporal trends in outdoor RF-EMF exposure from 2016 to 2023 in four European countries using repeated walking-route measurements with exposimeters. The abstract reports that data did not suggest significant changes in mobile base station (downlink) exposure over time and that trends were not consistent across individual microenvironments. Reported median downlink exposure values varied by country and year but did not indicate an overall increase despite higher mobile data traffic.
Electromagnetic fields and DNA damage
This review discusses the comet assay and summarizes research on non-ionizing EMF exposure and DNA/chromosomal damage. It describes both positive and negative findings across studies, noting no consistent overall pattern for radiofrequency radiation (RFR). The authors nonetheless conclude that under certain exposure conditions RFR appears genotoxic and may affect DNA damage and repair, with evidence discussed as most applicable to exposures typical of cell phone use.
20 kHz Magnetic Field Emission of Induction Cooking Heaters
This exposure assessment measured 20 kHz magnetic field leakage from induction cooking heaters across four models and compared results with ICNIRP general public limits. The maximum reported magnetic flux density was 16 µT at a specified measurement point using two S-type pans. Field leakage depended on pan size and configuration, and finite element modeling was reported to align closely with measurements.