Archive
71 postsAssessment of 5G RF-EMF Exposure during Large-Scale Public Events via Field Measurements
This exposure-assessment study conducted field measurements of 5G downlink RF-EMF during a large public festival in Valencia, Spain, and compared them with a baseline day. Measurements covered 700 MHz and 3500 MHz bands across three network operators and five locations, using 6-minute and 30-minute durations. The study reports higher event-related power density (up to eightfold at 3500 MHz) but states that all measured levels remained well below international safety limits.
Traceable Assessment of the Absorbed Power Density of Body Mounted Devices at Frequencies Above 10 GHz
This paper presents a traceable experimental dosimetry method to measure absorbed power density (APD) from body-mounted wireless devices at frequencies above 10 GHz. It combines a miniaturized broadband probe, a composite skin-equivalent phantom, and reconstruction/calibration procedures, with validation using reference antennas. The approach is reported as validated for 24–30 GHz and extendable to 10–45 GHz, supporting regulatory-type testing aligned with international safety standards.
Assessing exposure from different vehicular antennas in military applications: a computational study
This computational study modeled electromagnetic exposure for military personnel near vehicular communication antennas across HF, VHF, and UHF scenarios. All simulated configurations reportedly met ICNIRP Basic Restrictions, though some exceeded ICNIRP Reference Levels in certain positioning and frequency combinations. The authors conclude that safety is generally maintained across the modeled conditions and that results can inform operational guidance and safety regulations.
Instruments and Measurement Techniques to Assess Extremely Low-Frequency Electromagnetic Fields
This paper presents a quantitative framework for selecting extremely low-frequency electromagnetic field (ELF-EMF) measurement instruments. It uses a weighted scoring matrix across six criteria and a logic-based flowchart to guide instrument choice based on operational needs. The framework is demonstrated in an occupational case study and is positioned as supporting transparent, adaptable device selection for occupational safety and public health.
Building the gulf of opinions on the health and biological effects of electromagnetic radiation
This narrative article examines how opposing views formed regarding health and biological effects of electromagnetic radiation, focusing on ELF and RF exposures. It highlights historical controversies (e.g., childhood leukemia and ELF fields) and disputes over thermal versus non-thermal effects and reliance on SAR. The author argues that social and institutional factors, including industry influence, shaped interpretation and public discourse around EMF safety.
Comparative Analysis of Beamforming Techniques and Beam Management in 5G Communication Systems
This engineering paper reviews and classifies beamforming techniques in 5G New Radio and examines beam management procedures at Layer 1 and Layer 2. It analyzes the spectral spectrogram of Synchronization Signal Blocks (SSBs) to illustrate how configuration parameters influence spectral occupancy and synchronization-related performance in different deployment scenarios, including FR2. The work is framed as technical optimization, with only a general note that such knowledge may inform safety considerations related to EMF exposure.
Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies
This study uses anatomically detailed computational models of a five-year-old girl, a pregnant woman in the third trimester, and a fetus to simulate mobile phone RF exposure inside an elevator cabin. Simulations at 1000 MHz and 1800 MHz across 48 configurations evaluated SAR10g, whole-body SAR, and maximum temperature. The abstract reports that configuration (positioning and phone orientation) can substantially change absorption and temperature metrics and calls for broader scenario testing to inform safety guidance for vulnerable populations.
A Prolonged exposure to Wi-Fi Radiation Induces Neurobehavioral Changes and Oxidative Stress in Adult Zebrafish
This animal study exposed adult zebrafish to 2.45 GHz Wi‑Fi radiation for 4 hours daily over 30 consecutive days. The authors report neurobehavioral impairments with altered locomotion, alongside decreased acetylcholinesterase and increased brain oxidative stress. They conclude these findings indicate a safety risk and call for further mechanistic and public health research.
Perspectives on terahertz honeybee sensing
This paper describes measurements and simulations to support terahertz (THz) sensing of European honey bees for environmental monitoring. It reports dielectric characterization of bee body parts across 1–500 GHz, scattering-based validation of 3D-printed bee mockups, and THz imaging demonstrating detailed anatomical visualization. The work includes dosimetric simulations at 300 GHz to evaluate feasibility of non-invasive, continuous monitoring and notes potential relevance to assessing high-frequency EMF impacts on insect health and habitat safety.
Human achromatic flickers and phosphenes thresholds under extremely low frequency electric stimulations
This study estimated thresholds and locus for human phosphene perception during non-invasive transcranial alternating current stimulation at 20, 50, 60, and 100 Hz. Perception depended significantly on stimulation intensity, with the lowest threshold at 20 Hz and no reported phosphenes at 100 Hz. The authors report dosimetry consistent with a retinal origin and frame the findings as relevant for informing cautious ELF exposure limits in safety guidelines.
Effects of Polarized Coherent Microwaves Modulated at Extremely Low Frequencies
This review-style text discusses polarized, coherent microwaves that are modulated and pulsed at extremely low frequencies (ELF) and suggests these characteristics may increase biological interactions. It emphasizes that intensity variability and ELF modulation are important for understanding EMF–biology interactions. It also states that such exposures have been linked to health risks in the scientific literature, framing the topic as relevant to EMF safety and public health risk mitigation.
Potential Impacts of Radiofrequency Electromagnetic Fields on the Central Nervous System, Brain Neurotransmitter Dynamics and Reproductive System
This review discusses potential impacts of radiofrequency electromagnetic fields from technologies such as Wi‑Fi and mobile phones on the central nervous system, neurotransmitter dynamics, and reproductive health. It describes proposed mechanisms including oxidative stress, thermal effects, altered neurotransmitter activity, ion channel changes, and neuronal apoptosis, while acknowledging conflicting evidence. The authors note that Wi‑Fi RF exposure has not been confirmed to exceed safety guidelines but argue that updated standards and long-term studies are needed, particularly for children/adolescents and in the context of expanding technologies such as 5G.
Electromagnetic fields regulate iron metabolism: From mechanisms to applications
This review synthesizes evidence that electromagnetic field (EMF) exposure is associated in the literature with changes in systemic and cellular iron metabolism, with reported effects varying by EMF parameters, exposure duration, and biological context. It proposes mechanistic pathways involving iron-containing proteins/tissues, membrane and ion channel modulation, and reactive oxygen species (ROS). The authors frame iron-metabolism modulation as relevant to both therapeutic applications and safety evaluation, while emphasizing inconsistencies and the need for standardized exposure protocols.
Active matter as the underpinning agency for extraordinary sensitivity of biological membranes to electric fields
This biophysics paper presents a nonequilibrium (active matter) statistical mechanics model for electromechanical biological membranes. It argues that energy-driven activity in membranes could enable detection of electric fields far below equilibrium thermal-noise limits, and reports that the model can reproduce experimental observations by tuning activity. The abstract frames this as a potential mechanistic link between weak electromagnetic fields and biological responses, while also noting future modeling directions and possible implications for exposure safety discussions.
Effect of short-term extremely low-frequency electromagnetic field on respiratory functions
This animal study tested whether short-term ELF-EMF exposure alters respiratory physiology in rats. Twenty Wistar albino rats were assigned to control or EMF exposure (50 Hz, 0.3 mT for 2 minutes) with respiratory parameters measured before, during, and after exposure. The study reports changes during exposure (lower respiratory rate and higher cycle duration, inspiration time, and tidal volume) but no differences after exposure, and it frames the findings as relevant to EMF safety and potential health risks.
Effect of electromagnetic field radiation on transcriptomic profile and DNA methylation level in pig conceptuses during the peri-implantation period
This in vitro study exposed pig conceptuses (days 15–16 of pregnancy) to 50 Hz ELF-EMF for 2 hours and assessed transcriptomic and DNA methylation changes. The authors report altered expression of 21 protein-coding transcripts and an approximately 16-fold increase in genomic DNA methylation, with promoter methylation changes in several named genes. They conclude ELF-EMF interacts with gene expression and DNA methylation processes during early development and call for further safety research.
5G Radiofrequency Exposure Reduces PRDM16 and C/EBP � mRNA Expression, Two Key Biomarkers for Brown Adipogenesis
This animal study exposed juvenile and young adult Wistar rats to 5G (3.5 GHz) or 2G (900 MHz) radiofrequency fields (1.5 V/m) for 1–2 weeks and measured brown adipose tissue-related gene expression by RT-qPCR. The abstract reports significant downregulation of PRDM16 and C/EBP mRNA after 5G exposure, while UCP1-dependent thermogenesis markers were not significantly changed at the transcriptional level. The authors interpret these findings as a potential partial disruption of brown adipocyte differentiation and raise EMF safety concerns, while calling for further confirmatory research.
Mitigating Heat-Induced Sperm Damage and Testicular Tissue Abnormalities: The Protective Role of Radiofrequency Radiation from Wi-Fi Routers in Rodent Models
This rodent study examined whether 2.45 GHz Wi‑Fi router RF-EMF exposure could mitigate heat-stress-related reproductive damage in male rats. The combined RF-EMF + heat group reportedly had improved testicular structure measures and sperm quality versus heat-only, while RF-EMF alone was also reported to alter testis and sperm parameters. The authors interpret the findings as potentially consistent with an adaptive response and call for more research on mechanisms and safety.
The Systematic Review on RF-EMF Exposure and Cancer by Karipidis et al. (2024) has Serious Flaws that Undermine the Validity of the Study's Conclusions
This letter critiques the WHO-sponsored systematic review by Karipidis et al. (2024) on RF-EMF exposure and cancer risk. The authors argue the review has serious methodological and interpretative flaws, including issues with study selection and data analysis. They contend that the review’s conclusion of "no clear evidence" may be misleading and should not be used as a basis for health policy or safety guidelines.
Effects of radiofrequency field from 5G communication on fecal microbiome and metabolome profiles in mice
This animal study exposed adult male C57BL/6 mice to a 4.9 GHz radiofrequency field for three weeks (1 hour/day) and compared them with a sham group. The abstract reports altered fecal microbiome composition with reduced diversity in the RF group, along with 258 significantly differentially abundant fecal metabolites. The authors conclude that 4.9 GHz RF exposure is associated with changes in gut microbiota and metabolic profiles and call for further EMF safety research.
Physics and biology of mobile telephony
This review argues that current mobile-telephony safety guidelines address excessive microwave heating but may not account for potential non-thermal influences of low-intensity, pulsed radiation. It highlights an asserted oscillatory similarity between pulsed microwave signals and certain electrochemical activities in humans as a reason for concern. While acknowledging uncertainty about health consequences, it notes reported consistencies between some non-thermal effects and neurological problems described by some users and people with long-term base-station exposure.