Archive
77 postsRF-EMF Exposure Assessment: Comparison of Measurements in Airports and Flights with and Without Wi-Fi Service
This exposure assessment used personal exposimeters to measure RF-EMF levels in the 2.4 GHz and 5.85 GHz Wi-Fi bands in airport terminals and during four international flights, including flights with and without onboard Wi-Fi service. Reported mean exposures varied by route but were described as substantially below an international reference level (10 W/m²). The authors conclude exposure is low while also recommending ongoing monitoring and precaution due to potential health concerns mentioned as emerging evidence.
Exposure Variability Between 1- or 6-Minute and 30-Minute Averaging Time Lengths in Radiofrequency-Electromagnetic Field Exposure Monitoring
This exposure assessment study compared RF-EMF measurements averaged over 1, 6, and 30 minutes using contiguous 1-minute data collected over 30 minutes at four indoor/outdoor sites across 15 frequency bands. Relative deviations between shorter averaging times and 30-minute averages were largely within ±3 dB. However, statistical comparisons of overall exposure variability between 1- or 6-minute and 30-minute averaging produced inconsistent results, with broadcast and most mobile services <2 GHz appearing broadly similar between 1- and 6-minute averaging.
Prolonged 3.5 GHz and 24 GHz RF-EMF Exposure Alters Testicular Immune Balance, Apoptotic Gene Expression, and Sperm Function in Rats
This rat study examined 60-day RF-EMF exposure at 3.5 GHz and 24 GHz for 1 or 7 hours per day and assessed testicular cytokines, apoptosis-related gene expression, and sperm quality. The authors report changes consistent with altered immune signaling and pro-apoptotic pathways, alongside reduced sperm parameters (frequency- and duration-dependent). The conclusion frames these findings as an EMF safety concern and suggests longer daily exposure worsened negative effects.
The effect of Wi-Fi on elastic and collagen fibres in the blood vessel wall of the chorioallantoic membrane
This animal experimental study exposed chicken embryos (CAM) continuously to 2.4 GHz Wi-Fi at an average power density of 300 μW/m2 for 9 or 14 embryonic days. H&E staining reportedly showed no significant structural differences in large vessel walls versus controls. However, special staining reported decreased optical density of elastic fibers at both time points and changes in collagen fiber optical density (increase at day 9, decrease at day 14). The authors conclude Wi-Fi exposure can alter fibrous vessel wall components and suggest potential relevance to cardiovascular disorders.
Review of the evidence on the influence of Wi-Fi 2.4 GHz radiation on oxidative stress and its possible relationship with Alzheimer's disease
The review states there is no scientific consensus on whether Wi‑Fi (2.4/5 GHz) contributes to Alzheimer's disease through oxidative stress, and that existing results are mixed and inconclusive. It discusses an indirect analysis linking oxidative-stress-responsive genes after 2.4 GHz exposure with genes associated with Alzheimer's disease. The authors suggest chronic exposure could affect regulation of neurodegeneration-related genes (e.g., GSK3B, APOE), while emphasizing that a direct relationship has not been demonstrated and more research is needed.
Investigation of fetal exposure to electromagnetic waves between 2.45 and 5 GHz during pregnancy
This dosimetry study simulated fetal RF-EMF exposure between 2.45 and 5 GHz during the second trimester, estimating SAR10g in fetal brain and lungs. The presence of a belly-button piercing increased SAR, with maxima reported at 2.45 GHz (16 mW/kg in lungs; 14 mW/kg in brain). Despite these increases, all SAR values were reported to remain below IEEE and ICNIRP limits, while the authors note a precautionary implication regarding metal objects during pregnancy.
3.5GHz radiofrequency electromagnetic fields (RF-EMF) on metabolic disorders in Drosophila melanogaster
This animal study used metabolomics to assess metabolic changes in male Drosophila melanogaster exposed to 3.5 GHz RF-EMF at 0.1, 1, and 10 W/m². It reports disruptions in four metabolic pathways and 34 differential metabolites, with significant decreases in several metabolites including GABA, glucose-6-phosphate, and AMP. The authors interpret the findings as suggesting RF-EMF-related metabolic disturbance, while noting no clear dose-dependent pattern.
Dosimetric Electromagnetic Safety of People With Implants: A Neglected Population?
This dosimetric study evaluated whether existing EM safety guidelines protect individuals with conductive implants by assessing implant-related local field enhancements. Across 10 kHz to 1 GHz, the authors report large increases in psSAR10mg and local electric fields near implants, particularly below 100 MHz. In human anatomical models with implants exposed to an 85 kHz wireless power transfer coil and a 450 MHz dipole, the study reports guideline exceedances and elevated psSAR10mg, while the modeled temperature rise at 450 MHz remained under 0.4 K after six minutes. The authors conclude current guidelines are insufficient for people with implants and propose regulatory changes.
Oxidative stress and testicular damage induced by chronic exposure to 35.5 GHz millimeter wave radiation in male Wistar rats
This randomized controlled animal study examined chronic 35.5 GHz millimeter wave exposure in male Wistar rats (2 hours/day for 60 days) compared with control and sham groups. The exposed group showed reduced sperm count and viability along with testicular histopathological changes. Oxidative stress markers shifted toward increased lipid peroxidation and reduced antioxidant defenses, and comet assay results indicated increased DNA damage.
Impact of in vitro exposure to 5G-modulated 3.5 GHz fields on oxidative stress and DNA repair in skin cells
This in vitro study tested whether 5G-modulated 3.5 GHz RF-EMF exposure affects oxidative stress and DNA repair in human skin cells. Under acute exposure conditions (up to 24–48h) at SARs up to 4 W/kg, the authors report no significant changes in ROS markers, no adaptive response to oxidative challenge, and no impairment of UV-B–related CPD repair via nucleotide excision repair. The authors note that acute in vitro results may not directly generalize to chronic or real-life exposures.
5G RF EMF Spectral Exposure Assessment in Four European Countries
This exposure assessment used 146 indoor and outdoor spot measurements in 2023 across Belgium, Switzerland, Hungary, and Poland to characterize 5G (3.6 GHz) and cumulative RF EMF incident power density in public spaces and educational institutions. Reported maximum 5G-specific incident power density was 10.4 mW/m2 (3.2% of the frequency-specific ICNIRP guideline), and all measured levels were stated to be well within ICNIRP limits. Rural areas showed significantly lower incident power density than urban areas, and LOS conditions had higher average incident power density than NLOS. The authors recommend continued reassessment as 5G coverage expands.
Assessment of spatial-average absorbed power density and peak temperature rise in skin model under localized electromagnetic exposure
This numerical dosimetry study modeled localized RF exposure (3–30 GHz) in multi-layer human skin constructs including skin, fat, and muscle, with an added synthetic blood vessel model. Vascular modeling had negligible impact on peak spatial-averaged absorbed power density and a modest impact on peak temperature rise (about 8% at 3 GHz, <3% above 6 GHz). The authors conclude that including vasculature can refine predictions of localized thermal distributions for dosimetry accuracy.
Traceable Assessment of the Absorbed Power Density of Body Mounted Devices at Frequencies Above 10 GHz
This paper presents a traceable experimental dosimetry method to measure absorbed power density (APD) from body-mounted wireless devices at frequencies above 10 GHz. It combines a miniaturized broadband probe, a composite skin-equivalent phantom, and reconstruction/calibration procedures, with validation using reference antennas. The approach is reported as validated for 24–30 GHz and extendable to 10–45 GHz, supporting regulatory-type testing aligned with international safety standards.
Combined effects of constant temperature and radio frequency exposure on Aedes mosquito development
This laboratory study tested combined effects of constant temperature and RF exposure on development of Aedes aegypti and Aedes albopictus from hatching to adult emergence. Temperature was reported as the primary determinant of developmental timing, with optimal development around 30 2 C. RF exposure (900 MHz and 18 GHz) was described as a secondary factor that could accelerate or prolong development depending on temperature, with synergistic shortening at 25 0 C and prolongation under suboptimal conditions.
The modeling of the interaction of pulsed 5G/6G signals and the fine structure of human skin
This paper uses advanced electromagnetic simulations of human skin microstructure to model exposure to realistic pulsed 5G/6G signals at 3.5, 27, 77, and 300 GHz. It reports localized, inhomogeneous absorption patterns linked to sweat glands and blood vessels, suggesting that treating skin as homogeneous may miss hotspots. The authors conclude that SAR-based standards may be inadequate for mmWave/sub-THz exposures and could underestimate potential risks, including possible nerve excitation.
Numerical Analysis of Human Head Exposure to Electromagnetic Radiation Due to 5G Mobile Phones
This conference paper uses numerical simulations to evaluate near-field exposure and thermal effects in a detailed human head model from a realistic 5G mobile phone operating at 26 GHz. The preliminary modeling suggests moderate, localized temperature increases in superficial tissues. The authors emphasize the need for higher-resolution models, refined tissue segmentation, longer exposure durations, and varied phone placements to better characterize potential impacts.
Impact of Anthropomorphic Shape and Skin Stratification on Absorbed Power Density in mmWaves Exposure Scenarios
This dosimetry study used FDTD simulations at 28 GHz to evaluate how skin stratification and anthropomorphic modeling affect absorbed power density (APD) estimates. APD was higher with stratified skin than with homogeneous skin for a wearable patch antenna (16%–30% higher), while plane-wave differences were smaller (<11%). The authors argue that simplified skin models may underestimate exposure in mmWave wearable scenarios.
Standards: Exposure Limits for Brief High Intensity Pulses of Radiofrequency Energy Between 6 and 300 GHz
This standards-focused paper evaluates ICNIRP and IEEE (C95.1-2019) exposure limits for brief, high-intensity pulsed RF-EMF between 6 and 300 GHz, particularly when exposures vary within the 6-minute averaging window. Using numerical and analytical modeling with a one-dimensional thermal tissue model, it reports differences in protection against transient skin heating, with IEEE described as more conservative than ICNIRP. The authors propose an adjustment to pulse fluence limits to improve consistency of protection and note that nonthermal and thermoacoustic effects were not analyzed.
Genotoxic and histopathological effects of 6 GHz radiofrequency electromagnetic radiation on rat liver tissue
This animal experiment exposed adult male rats to 6 GHz RF-EMR (0.065 W/kg) for 4 hours/day over 42 days and compared them with sham controls. The exposed group showed higher comet assay genotoxicity metrics, though not statistically significant, and more prominent liver histopathological changes (e.g., portal inflammation and congestion). The authors conclude that 6 GHz exposure can cause histopathological and DNA-level changes in rat liver tissue under the studied conditions.
Single-cell analysis reveals the spatiotemporal effects of long-term electromagnetic field exposure on the liver
This animal study exposed mice to 2.45 GHz electromagnetic fields daily for up to 5 months and assessed liver effects using serum tests, lipidomics, histology, and single-cell/spatiotemporal transcriptomics. The authors report that hepatic cell types differed in sensitivity, with hepatocytes, endothelial cells, and monocytes showing notable transcriptomic disruptions. Reported changes involved lipid metabolism and immune regulation and were spatially enriched in peri-portal liver regions. The authors frame the findings as evidence of significant biological impacts on the liver from long-term EMF exposure.
A Prolonged exposure to Wi-Fi Radiation Induces Neurobehavioral Changes and Oxidative Stress in Adult Zebrafish
This animal study exposed adult zebrafish to 2.45 GHz Wi‑Fi radiation for 4 hours daily over 30 consecutive days. The authors report neurobehavioral impairments with altered locomotion, alongside decreased acetylcholinesterase and increased brain oxidative stress. They conclude these findings indicate a safety risk and call for further mechanistic and public health research.
Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast
This in vitro study exposed yeast suspensions to 2.45 GHz near-field microwave radiation at 2 cm and 4 cm for 20 or 60 minutes. It reports oxidative-stress-related changes (reduced antioxidant activity with increased membrane permeability) after 20 minutes at 2 cm, an effect not reproduced by conventional heating. The study also reports a trend toward increased DNA damage under both exposure conditions and mild membrane permeability changes after 60 minutes at 4 cm.
Radiofrequency electromagnetic fields reduce bumble bee visitation to flowers
This blinded, two-year study examined whether RF-EMF exposure at 2.4 and 5.8 GHz affects pollinator visitation to Salvia and Lavandula. The authors report no significant effect on honey bee visitation rates. They report a significant reduction in bumble bee visits per observation period under RF-EMF exposure, which they frame as a potential risk warranting further long-term research.
Perspectives on terahertz honeybee sensing
This paper describes measurements and simulations to support terahertz (THz) sensing of European honey bees for environmental monitoring. It reports dielectric characterization of bee body parts across 1–500 GHz, scattering-based validation of 3D-printed bee mockups, and THz imaging demonstrating detailed anatomical visualization. The work includes dosimetric simulations at 300 GHz to evaluate feasibility of non-invasive, continuous monitoring and notes potential relevance to assessing high-frequency EMF impacts on insect health and habitat safety.
5G Radio-Frequency-Electromagnetic-Field Effects on the Human Sleep Electroencephalogram: A Randomized Controlled Study in CACNA1C Genotyped Volunteers
This randomized, double-blind, sham-controlled study tested whether CACNA1C rs7304986 genotype modifies sleep EEG responses to 5G RF-EMF exposure. The authors report a genotype-by-exposure interaction, with 3.6 GHz exposure in T/C carriers associated with a faster NREM sleep spindle center frequency versus sham. The abstract also notes longer sleep latency in T/C compared with T/T carriers, and concludes that genetically susceptible groups may show differential physiological responses to 5G RF-EMF.