Archive
92 postsFilters: category: rf-emf Clear
Non-thermal biological effects of radiofrequency electromagnetic radiation: Mechanistic insights into male reproductive vulnerability in the era of ubiquitous exposure
This narrative review discusses proposed non-thermal mechanisms by which chronic, low-intensity RF-EMR from ubiquitous wireless sources may affect male reproductive health. It highlights oxidative stress, mitochondrial dysfunction, impaired testosterone synthesis/steroidogenesis, and declines in sperm quality as reported outcomes. The authors argue that current SAR/thermal-based guidelines may not capture these endpoints and call for updated standards and precautionary measures.
The Influence of Mobile Technologies on the Quality of Sleep
This study assessed whether sleeping with versus without a mobile phone (two-week intervals) affects sleep in medical students, using smartwatch-based monitoring. It reports no statistically significant differences in sleep quality or time spent in wakefulness, REM, light, or deep sleep between conditions. The authors report a statistically significant effect on minimum and average blood oxygen saturation during sleep and call for further research on nightly RF-EMF exposure.
Effects of Simultaneous In-Vitro Exposure to 5G-Modulated 3.5 GHz and GSM-Modulated 1.8 GHz Radio-Frequency Electromagnetic Fields on Neuronal Network Electrical Activity and Cellular Stress in Skin Fibroblast Cells
This in-vitro study exposed primary cortical neurons and human immortalized skin fibroblasts to simultaneous 5G-modulated 3.5 GHz and GSM-modulated 1.8 GHz RF-EMF at SARs of 1 or 4 W/kg. It reports no significant changes in neuronal network firing/bursting activity and no alteration of mitochondrial ROS in fibroblasts. Stress-related signaling readouts showed only minor, threshold-level variations without a consistent pattern, and no HSF1 activation was observed. Overall, the authors conclude there is no strong evidence of biological effects under these exposure conditions.
Visualizing radiofrequency electromagnetic field exposure through Voronoi-based maps
This exposure-assessment study proposes a Voronoi-diagram approach to visualize RF-EMF exposure across a city using personal exposimeter measurements of RMS electric field at seed points. Most mapped areas corresponded to about 1.9 V/m, with a maximum reported value of 11.4 V/m, all below the cited ICNIRP guideline level. The authors conclude the method is useful for communicating spatial variability, while also noting broader literature discussing potential health risks from EMF exposure.
Empowering the Serbian EMF RATEL System for Monitoring RF-EMF Through Drive Test
This engineering/monitoring paper describes enhancements to the Serbian EMF RATEL system, which has continuously monitored RF-EMF since 2017, by adding drive test functionality to improve spatial coverage. The authors report preliminary quantitative drive test measurements and validation of the upgraded approach. The work emphasizes that characterizing spatial and temporal RF-EMF patterns can support exposure assessment relevant to public health risk evaluation.
The WHO-commissioned systematic reviews on health effects of radiofrequency radiation provide no assurance of safety
This paper evaluates and critiques 12 WHO-commissioned systematic reviews and meta-analyses on RF-EMF health effects across outcomes including cancer and reproductive endpoints. It argues that serious methodological flaws and limitations in the WHO reviews prevent them from providing assurance of safety for cell phones and other wireless devices. The authors highlight reported evidence in the animal cancer review (high certainty for heart schwannomas; moderate certainty for brain gliomas) and describe dose-related adverse effects on male fertility and reproductive outcomes, including at exposure levels below current ICNIRP thresholds.
3.5GHz radiofrequency electromagnetic fields (RF-EMF) on metabolic disorders in Drosophila melanogaster
This animal study used metabolomics to assess metabolic changes in male Drosophila melanogaster exposed to 3.5 GHz RF-EMF at 0.1, 1, and 10 W/m². It reports disruptions in four metabolic pathways and 34 differential metabolites, with significant decreases in several metabolites including GABA, glucose-6-phosphate, and AMP. The authors interpret the findings as suggesting RF-EMF-related metabolic disturbance, while noting no clear dose-dependent pattern.
Bacterial Adaptation to Radiofrequency Electromagnetic Fields Based on Experiences from Ionizing Radiation
This 2025 review summarizes historical and modern literature on how bacteria may adapt to radiofrequency electromagnetic fields from common sources such as mobile phones and Wi-Fi. It argues that RF-EMF exposure can influence bacterial survival mechanisms and could potentially compromise therapeutic interventions by promoting increased resistance. The authors frame these possibilities as a public health concern and call for continued research and precaution.
Effect of electromagnetic radiations from mobile towers on genetic damage and genetic polymorphism in humans: a review on India's perspective
This narrative review examines research on radiofrequency electromagnetic radiation (RF-EMR) from mobile towers and its potential association with genetic damage and genetic polymorphism in humans, with an emphasis on India. The abstract states that RF-EMR exposure may affect genetic material and suggests a link between EMR exposure and genetic damage, with possible implications for cancer risk and cell death. It also highlights that genetic polymorphisms may modify susceptibility and calls for further research to clarify health impacts.
Systematic reviews and meta-analyses for the WHO assessment of health effects of exposure to radiofrequency electromagnetic fields, an introduction
This editorial introduces a special issue supporting the WHO assessment of health effects from RF-EMF exposure, based on nine protocols and twelve systematic reviews developed over four years by more than 80 experts. It summarizes that human evidence for major cancers was moderate-certainty for no or only small effects, with lower certainty for some cancer sites, while animal evidence reported higher-certainty effects for several cancer types and adverse effects on male fertility. For cognition, symptoms, and oxidative stress, certainty was generally lower and findings more variable, and the editors note ongoing methodological challenges and the possibility of unidentified mechanisms.
Looking for Biomarkers Which May Explain Idiopathic Environmental Intolerance Attributed to EMF (IEI-EMF): Does RF-EMF Exposure Influence Salivary Cortisol Response?
This randomized, double-blind, counterbalanced provocation study tested whether short-term RF-EMF exposure alters salivary cortisol in 72 predominantly young, healthy adults. Active exposure (2 W/kg peak SAR10g in head) showed no significant effect on cortisol compared with sham, and no sex differences were observed. The authors note that results may not rule out effects in populations not studied and encourage further research into plausible biological interactions.
From particulates to pathways: environmental exposures and their impact on Alzheimer's disease
This review discusses how environmental exposures across air, water, and soil pollutants may influence Alzheimer's disease (AD) onset and progression. It highlights EMFs as a potential aggravating factor, reporting associations with oxidative stress, inflammation, calcium dysregulation, and accelerated amyloid-beta plaque accumulation in animal and human studies. The authors emphasize risk reduction strategies and call for further research and public health interventions.
Dual Evaluation and Spatial Analysis of RF-EMF Exposure in 5G: Theoretical Extrapolations and Direct Measurements
This exposure assessment study evaluated 5G RF-EMF exposure using both theoretical extrapolations and direct measurements in semiurban and urban settings, including a campus case study. Measured and extrapolated exposure levels were reported to be within ICNIRP recommended limits, even under high network data demand. The authors also report a strong correlation between theoretical and instantaneous field exposures, supporting the validity of their dual-method framework.
Assessment of 5G RF-EMF Exposure during Large-Scale Public Events via Field Measurements
This exposure-assessment study conducted field measurements of 5G downlink RF-EMF during a large public festival in Valencia, Spain, and compared them with a baseline day. Measurements covered 700 MHz and 3500 MHz bands across three network operators and five locations, using 6-minute and 30-minute durations. The study reports higher event-related power density (up to eightfold at 3500 MHz) but states that all measured levels remained well below international safety limits.
5G RF EMF Spectral Exposure Assessment in Four European Countries
This exposure assessment used 146 indoor and outdoor spot measurements in 2023 across Belgium, Switzerland, Hungary, and Poland to characterize 5G (3.6 GHz) and cumulative RF EMF incident power density in public spaces and educational institutions. Reported maximum 5G-specific incident power density was 10.4 mW/m2 (3.2% of the frequency-specific ICNIRP guideline), and all measured levels were stated to be well within ICNIRP limits. Rural areas showed significantly lower incident power density than urban areas, and LOS conditions had higher average incident power density than NLOS. The authors recommend continued reassessment as 5G coverage expands.
Assessment of spatial-average absorbed power density and peak temperature rise in skin model under localized electromagnetic exposure
This numerical dosimetry study modeled localized RF exposure (3–30 GHz) in multi-layer human skin constructs including skin, fat, and muscle, with an added synthetic blood vessel model. Vascular modeling had negligible impact on peak spatial-averaged absorbed power density and a modest impact on peak temperature rise (about 8% at 3 GHz, <3% above 6 GHz). The authors conclude that including vasculature can refine predictions of localized thermal distributions for dosimetry accuracy.
Radiofrequency Electromagnetic Field Emissions and Neurodevelopmental Outcomes in Infants: A Prospective Cohort Study
This prospective cohort study followed 105 neonates/infants for one year and measured household RF-EMF using a selective radiation meter, categorizing exposure into tertiles. Higher household RF-EMF exposure was associated with lower ASQ-3 neurodevelopmental scores, particularly in motor and problem-solving domains, and higher odds of monitor/refer classifications for fine motor and problem-solving. The abstract notes these associations persisted after adjustment for low birth weight, though exposure was measured at a single time point and key confounders (e.g., prenatal phone use, parental interaction) were not assessed.
A scoping review and evidence map of radiofrequency field exposure and genotoxicity: assessing in vivo, in vitro, and epidemiological data
This scoping review and evidence map (PRISMA-ScR) summarizes over 500 studies on RF-EMF exposure and genotoxicity across in vitro, in vivo, and epidemiological research. The authors report a higher proportion of significant DNA damage findings in in vivo and epidemiological studies than in vitro studies, with DNA base damage commonly reported under real-world/pulsed/GSM talk-mode conditions and longer exposures. They conclude that DNA damage has been observed at exposure levels below ICNIRP limits and recommend precautionary measures and updates to guidelines to address potential non-thermal effects.
Building the gulf of opinions on the health and biological effects of electromagnetic radiation
This narrative article examines how opposing views formed regarding health and biological effects of electromagnetic radiation, focusing on ELF and RF exposures. It highlights historical controversies (e.g., childhood leukemia and ELF fields) and disputes over thermal versus non-thermal effects and reliance on SAR. The author argues that social and institutional factors, including industry influence, shaped interpretation and public discourse around EMF safety.
Men with genetic predisposition face greater fertility challenges when exposed to electromagnetic radiation
This case-control genetic association study in men from West Bengal, India examined variants in meiotic regulator genes (SPO11, RNF212, SYCP3) alongside reported exposure to electronic (electromagnetic) radiation as risk factors for azoospermia. It reports that genetic variants were associated with increased azoospermia risk, and that risk was higher among men aged 30+ who were also exposed to electromagnetic radiation. The authors conclude that EMF exposure may exacerbate fertility impairment in genetically predisposed men.
Genotoxic and histopathological effects of 6 GHz radiofrequency electromagnetic radiation on rat liver tissue
This animal experiment exposed adult male rats to 6 GHz RF-EMR (0.065 W/kg) for 4 hours/day over 42 days and compared them with sham controls. The exposed group showed higher comet assay genotoxicity metrics, though not statistically significant, and more prominent liver histopathological changes (e.g., portal inflammation and congestion). The authors conclude that 6 GHz exposure can cause histopathological and DNA-level changes in rat liver tissue under the studied conditions.
Radiofrequency electromagnetic fields reduce bumble bee visitation to flowers
This blinded, two-year study examined whether RF-EMF exposure at 2.4 and 5.8 GHz affects pollinator visitation to Salvia and Lavandula. The authors report no significant effect on honey bee visitation rates. They report a significant reduction in bumble bee visits per observation period under RF-EMF exposure, which they frame as a potential risk warranting further long-term research.
Greater prevalence of symptoms associated with higher exposures to mobile phone base stations in a hilly, densely populated city in Mizoram, India
This cross-sectional study compared 183 higher-exposed residents with 126 matched reference residents and assessed symptoms via questionnaire alongside in-home RF-EMF power density measurements from mobile phone base stations. Higher exposure (including proximity within 50 m and power densities of 5–8 mW/m2) was reported to be associated with increased symptom prevalence across mood-energy, cognitive-sensory, inflammatory, and anatomical categories. The authors conclude that current public exposure limits may be inadequate for long-term, non-thermal biological impacts and call for precautionary policy updates.
Does Electromagnetic Pollution in the ART Laboratory Affect Sperm Quality? A Cross-Sectional Observational Study.
This cross-sectional observational study assessed sperm motility after one hour of in vitro exposure of semen samples to EMFs from different laboratory sources in an IVF setting. It reports a statistically significant reduction in progressive sperm motility after exposure to mobile phones and Wi-Fi repeaters, while other EMF-emitting equipment showed no significant effect. The authors interpret the findings as indicating a potential negative impact of specific RF sources and call for further research, alongside practical mitigation suggestions in IVF laboratories.
Characterization of the Core Temperature Response of Free-Moving Rats to 1.95 GHz Electromagnetic Fields
This animal study measured core body temperature in free-moving male and female Sprague Dawley rats during and after 3-hour exposure to 1.95 GHz RF-EMF at multiple whole-body average SAR levels. A measurable thermal response was reported at 4 W/kg, while lower SAR conditions showed smaller or no significant temperature increases. The authors note that temperature dropped quickly after exposure ended, implying post-exposure measurements may underestimate peak heating.