Archive
6 postsFilters: tag: wi-fi-exposure Clear
Effects of wireless local area network exposure on testicular morphology and VEGF levels
This rat study examined 2.45 GHz WLAN-like EMF exposure (3 V/m; SAR 0.00208 W/kg) for 1 hour/day over 60 days and assessed testicular morphology and VEGF-related markers. The abstract reports increased VEGFA gene expression and protein levels in exposed animals, with no change in HIF1A expression. It also reports multiple histological changes interpreted as testicular damage in the exposed group.
Time-Dependence Effect of 2.45 GHz RF-EMR Exposure on Male Reproductive Hormones and LHCGR
This animal study exposed male Sprague Dawley rats to 2.45 GHz Wi-Fi for varying daily durations over eight weeks and assessed reproductive hormones and LHCGR expression. Serum LH and testosterone did not differ significantly from controls, but LHCGR mRNA increased with longer exposure and LHCGR protein showed decreases with shorter exposures with partial improvement at 24 hours/day. The findings suggest molecular alterations in testicular tissue despite stable systemic hormone levels.
The effect of Wi-Fi on elastic and collagen fibres in the blood vessel wall of the chorioallantoic membrane
This animal experimental study exposed chicken embryos (CAM) continuously to 2.4 GHz Wi-Fi at an average power density of 300 μW/m2 for 9 or 14 embryonic days. H&E staining reportedly showed no significant structural differences in large vessel walls versus controls. However, special staining reported decreased optical density of elastic fibers at both time points and changes in collagen fiber optical density (increase at day 9, decrease at day 14). The authors conclude Wi-Fi exposure can alter fibrous vessel wall components and suggest potential relevance to cardiovascular disorders.
Effects of coenzyme Q10 on sperm parameters and pathological changes induced by Wi-Fi waves in the testicular tissue of rats
This animal study exposed rats to Wi‑Fi waves for 7 hours/day for 2 months and assessed sperm parameters, serum testosterone, and testicular/epididymal pathology, with and without coenzyme Q10 (CoQ10). The authors report that Wi‑Fi exposure was linked to worse sperm parameters, lower testosterone, and adverse testicular pathology. CoQ10 supplementation during exposure was reported to mitigate these changes compared with Wi‑Fi exposure alone.
Effects of non-ionizing radiation on the thyroid gland in rats
This animal study exposed Sprague-Dawley rats (including pregnant females and offspring) to 2.45 GHz Wi-Fi or mobile jammer radiation for 2 hours daily over two weeks and assessed thyroid hormones and thyroid histology. The abstract reports significant changes in T4 in exposed adult males and significant differences in T3 among male offspring exposed to jammer radiation. Histopathology reportedly showed disrupted thyroid follicular structure in exposed rats. The authors conclude these findings support a potential link between non-ionizing radiation exposure and altered thyroid endocrine and histological parameters.
The association of widely used electromagnetic waves exposure and pregnancy and birth outcomes in Yazd women: a cohort study
This cohort study of 1,666 women in Yazd City examined electromagnetic-wave exposure from commonly used devices during pregnancy and birth outcomes. Longer cell phone call duration during pregnancy was reported to be associated with higher risk of miscarriage, abnormal birth weight, and abnormal newborn height. Increased cordless phone use was also reported to be linked to abnormal birth weight, while other outcomes were assessed but not described as significantly associated in the abstract.