Archive
10 postsFilters: tag: thermal-effects Clear
Radio Frequency Exposure in Military Contexts: A Narrative Review of Thermal Effects and Safety Considerations
This narrative review focuses on RF exposure in military contexts, emphasizing thermal effects as the established mechanism of harm and discussing safety limits set by bodies such as ICNIRP and IEEE. It reports that whole-body SAR limits (≤4 W/kg) generally prevent dangerous core temperature rises, but localized heating risks may persist for tissues like skin and eyes, especially when thermoregulation is impaired. The review highlights CEM43 as a potentially useful thermal-dose metric but notes complexity for transient exposures and calls for improved models and methods across relevant frequency bands.
Exposure to 5G-NR electromagnetic fields affects larval development of Aedes aegypti mosquito
This animal study exposed Aedes aegypti larvae to 5G-NR RF-EMF at 3.6 GHz for 5 days under two feeding regimes. The study reports delayed development at a lower exposure level mainly in nutritionally weakened larvae, and at a higher exposure level reports developmental changes and reduced adult size attributed to dielectric heating. Mortality and wing length asymmetry were reported as unchanged, and the authors note such high exposure levels are unlikely in natural aquatic settings.
Thermal and SAR-Based Limits for Human Skin Exposed to Terahertz Radiation
This conference paper uses COMSOL Multiphysics simulations to evaluate thermal and SAR-based exposure limits for modeled human skin exposed to terahertz radiation (0.1–5 THz). The authors report negligible temperature increases at power densities consistent with keeping SAR below 1.6 W/kg, but note that higher power densities can yield minimal heating while producing SAR values above recognized safety thresholds. They conclude that existing sub-THz standards are not directly transferable to the full THz band and call for updated guidelines, especially for prolonged exposure.
Building the gulf of opinions on the health and biological effects of electromagnetic radiation
This narrative article examines how opposing views formed regarding health and biological effects of electromagnetic radiation, focusing on ELF and RF exposures. It highlights historical controversies (e.g., childhood leukemia and ELF fields) and disputes over thermal versus non-thermal effects and reliance on SAR. The author argues that social and institutional factors, including industry influence, shaped interpretation and public discourse around EMF safety.
Numerical Analysis of Human Head Exposure to Electromagnetic Radiation Due to 5G Mobile Phones
This conference paper uses numerical simulations to evaluate near-field exposure and thermal effects in a detailed human head model from a realistic 5G mobile phone operating at 26 GHz. The preliminary modeling suggests moderate, localized temperature increases in superficial tissues. The authors emphasize the need for higher-resolution models, refined tissue segmentation, longer exposure durations, and varied phone placements to better characterize potential impacts.
Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies
This study uses anatomically detailed computational models of a five-year-old girl, a pregnant woman in the third trimester, and a fetus to simulate mobile phone RF exposure inside an elevator cabin. Simulations at 1000 MHz and 1800 MHz across 48 configurations evaluated SAR10g, whole-body SAR, and maximum temperature. The abstract reports that configuration (positioning and phone orientation) can substantially change absorption and temperature metrics and calls for broader scenario testing to inform safety guidance for vulnerable populations.
Potential Impacts of Radiofrequency Electromagnetic Fields on the Central Nervous System, Brain Neurotransmitter Dynamics and Reproductive System
This review discusses potential impacts of radiofrequency electromagnetic fields from technologies such as Wi‑Fi and mobile phones on the central nervous system, neurotransmitter dynamics, and reproductive health. It describes proposed mechanisms including oxidative stress, thermal effects, altered neurotransmitter activity, ion channel changes, and neuronal apoptosis, while acknowledging conflicting evidence. The authors note that Wi‑Fi RF exposure has not been confirmed to exceed safety guidelines but argue that updated standards and long-term studies are needed, particularly for children/adolescents and in the context of expanding technologies such as 5G.
The effects of radiofrequency radiation on male reproductive health and potential mechanisms (Review)
This narrative review summarizes human and animal research on radiofrequency (RF) radiation exposure (e.g., mobile phones, Wi‑Fi, occupational sources) and male reproductive outcomes. It reports that the literature links RF exposure with reduced sperm quality and increased DNA damage, often alongside oxidative stress and other proposed biological changes. Although inconsistencies are acknowledged, the authors conclude the overall evidence suggests harmful associations and call for standardized, long-term studies and reconsideration of guidelines.
The use of different exposure metrics in the research about the health impacts of electromagnetic fields
This policy brief focuses on how RF-EMF exposure should be quantified in health research, emphasizing the role of near-field sources and proposing cumulative dose (J/kg/day) as a health-relevant metric. It reports mean cumulative dose estimates of 0.29 J/kg/day for the whole body and 0.81 J/kg/day for the brain. The brief notes established RF-EMF effects (heating, microwave hearing under highly pulsed radiation, and stimulation) and discusses indications of biological effects below thermal thresholds, while stating that improved metrics do not by themselves confirm harm.
Physics and biology of mobile telephony
This review argues that current mobile-telephony safety guidelines address excessive microwave heating but may not account for potential non-thermal influences of low-intensity, pulsed radiation. It highlights an asserted oscillatory similarity between pulsed microwave signals and certain electrochemical activities in humans as a reason for concern. While acknowledging uncertainty about health consequences, it notes reported consistencies between some non-thermal effects and neurological problems described by some users and people with long-term base-station exposure.