Archive
4 postsFilters: tag: membrane-potential Clear
RFR can drive autoimmunity through the S4 voltage sensor
RF Safe argues that radiofrequency radiation (especially pulsed or modulated signals with low-frequency components) can alter local membrane potentials at nanometer scales where voltage-gated ion channel S4 sensors operate. It claims these shifts could change ion channel gating in immune cells, altering calcium and proton signaling, increasing oxidative stress, and promoting innate immune activation that may contribute to autoimmune-like inflammation. The piece presents a mechanistic causal chain and highlights heart and nerve tissue as potentially more susceptible due to high ion-channel density and mitochondrial content, but does not present new study data in the provided text.
Mechanism first explanation of how the plasma membrane potential controls immune responses
An RF Safe article argues that plasma membrane potential (Vm) is a key control variable for immune cell behavior by shaping ion driving forces, especially Ca2+ influx through CRAC channels and K+ channel–mediated hyperpolarization. It describes proposed links between Vm-regulated ion flux and downstream immune functions such as T-cell activation (NFAT/NF-κB signaling), macrophage polarization, respiratory burst capacity, and NLRP3 inflammasome activation. The piece also mentions that external electric fields can influence T-cell migration and activation markers under some conditions, but it does not present new experimental data in the excerpt provided.
Bioelectricity in Morphogenesis
This narrative review discusses bioelectricity arising from membrane potentials and its role in morphogenesis beyond neural tissues. It reports that evidence supports bioelectric signals influencing embryonic development, tissue repair, and disease-related processes, and summarizes cellular mechanisms for generating and sensing these signals. The authors also highlight that potential health implications from natural and artificial electromagnetic fields warrant further scientific attention.
The proliferation rates of HT-1080 human fibrosarcoma cells can be accelerated or inhibited by weak static and extremely low frequency magnetic fields
This in vitro study exposed HT-1080 human fibrosarcoma cells for 4 days to weak extremely low frequency magnetic fields (10 μT, 12–33 Hz) superimposed on a 45 μT static field. The authors report frequency- and amplitude-dependent increases or decreases in cell growth, including sharp inversions near 16.5 Hz with small parameter changes or reversal of the static field direction. Associated changes in membrane potential, intracellular calcium, and mitochondrial superoxide are presented as supporting a bioenergetic mechanism.