Archive
6 postsFilters: tag: central-nervous-system Clear
Adverse Effects of Electromagnetic Fields on The Central Nervous System: A Review
This review argues that EMF exposure is associated in the literature with several adverse central nervous system outcomes, including blood-brain barrier disruption, oxidative stress, neurotransmitter changes, cognitive effects, and neurodevelopmental impacts. It reports that evidence on EMFs and brain tumors is conflicting, while noting WHO’s classification of radiofrequency EMFs as possibly carcinogenic to humans. The authors highlight prenatal and childhood periods as potentially more vulnerable and call for more standardized long-term and mechanistic research to guide public health policy.
The effects of electrical stimulation on neurons and glia of the central nervous system
This review synthesizes evidence on how direct current and alternating current electrical stimulation affect neurons and glia in the central nervous system, spanning basic research and clinical translation. It reports polarity- and parameter-dependent effects on axonal growth, along with immunomodulatory glial responses that may favor regeneration and enhanced myelination via OPC differentiation. The authors note early clinical applications with potential longer-term functional improvements, while emphasizing that stimulation parameters and patient context can influence risks and benefits.
Role of visual and non-visual opsins in blue light-induced neurodegeneration in Drosophila melanogaster
This animal study used Drosophila knockout lines to examine whether visual (Rh1) versus non-visual (Rh7) opsins contribute to blue-light-associated neural damage. Flies were continuously exposed to 488 nm blue light from egg deposition to 20 days, and brain DNA damage and vacuolisation were assessed. The study reports greater DNA damage and neurodegeneration markers in Rh1 knockout flies than in wild-type or Rh7 knockout flies, and concludes Rh1 is a predominant mediator of blue-light-induced neurotoxicity in the fly CNS.
Potential Impacts of Radiofrequency Electromagnetic Fields on the Central Nervous System, Brain Neurotransmitter Dynamics and Reproductive System
This review discusses potential impacts of radiofrequency electromagnetic fields from technologies such as Wi‑Fi and mobile phones on the central nervous system, neurotransmitter dynamics, and reproductive health. It describes proposed mechanisms including oxidative stress, thermal effects, altered neurotransmitter activity, ion channel changes, and neuronal apoptosis, while acknowledging conflicting evidence. The authors note that Wi‑Fi RF exposure has not been confirmed to exceed safety guidelines but argue that updated standards and long-term studies are needed, particularly for children/adolescents and in the context of expanding technologies such as 5G.
Experimental Study of Animal Behavior under the Influence of the Electromagnetic Field of the 5G Mobile Communication Standard
This pilot animal study exposed mature male Wistar rats to 4.9 GHz electromagnetic fields described as 5G-standard, for 15 days (2 hours/day) in a semi-anechoic shielded chamber. Open-field testing found no clear behavioral differences between unmodulated and modulated exposures. Statistically significant behavioral changes occurred in both exposed and control animals, which the authors attribute to changes in the environmental electromagnetic background, making causal interpretation uncertain.
Evaluation of Electrochemical Information Transfer System: I . Effect of Electric Fields on Living Organisms
This 1976 animal study evaluated the effects of weak ELF electric fields similar to those associated with Project Seafarer on mice. The abstract reports that electric field exposure acted as a biological stressor, with effects involving the central nervous and endocrine systems. It is presented as part of broader research assessing potential physiological changes from high-power, low-frequency electromagnetic communication systems.