Archive
8 postsElectromagnetic Exposure from RF Antennas on Subway Station Attendant: A Thermal Analysis
This paper reports a multiphysics electromagnetic–thermal simulation of radiofrequency (RF) antenna exposure for a subway station attendant, estimating specific absorption rate (SAR) and temperature rise in the trunk and selected organs at 900, 2600, and 3500 MHz. Using a COMSOL-based model with a detailed human anatomy representation, the authors found simulated SAR and temperature increases that they state are well below ICNIRP occupational exposure limits. The study concludes that RF emissions from antennas in the modeled subway environment pose low health risk for female attendants with similar characteristics to the model used, while noting the work is based on simulations rather than measurements.
Parametric analysis of electromagnetic wave interactions with layered biological tissues for varying frequency, polarization, and fat thickness
This PubMed-listed study models how RF electromagnetic waves interact with a simplified three-layer tissue structure (skin–fat–muscle) across common ISM bands (433, 915, 2450, 5800 MHz), varying polarization (TE/TM), incidence angle, and fat thickness. Using a custom MATLAB pipeline combining multilayer transmission-line methods, Cole–Cole dielectric parameters, and a steady-state Pennes bioheat solution, the authors estimate reflection, absorption, and resulting temperature rise. The simulations report small temperature increases at lower frequencies (433–915 MHz) and larger superficial heating at 5.8 GHz under the modeled conditions, highlighting how fat thickness and wave parameters modulate dosimetry and thermal outcomes.
Radio Frequency Exposure in Military Contexts: A Narrative Review of Thermal Effects and Safety Considerations
This narrative review focuses on RF exposure in military contexts, emphasizing thermal effects as the established mechanism of harm and discussing safety limits set by bodies such as ICNIRP and IEEE. It reports that whole-body SAR limits (≤4 W/kg) generally prevent dangerous core temperature rises, but localized heating risks may persist for tissues like skin and eyes, especially when thermoregulation is impaired. The review highlights CEM43 as a potentially useful thermal-dose metric but notes complexity for transient exposures and calls for improved models and methods across relevant frequency bands.
Intercomparisons of computed epithelial/absorbed power density & temperature rise in anatomical human face models under localized exposures at 10 & 30 GHz
This dosimetry intercomparison evaluated epithelial/absorbed power density and temperature rise in two high-resolution anatomical human face models under localized antenna exposures at 10 and 30 GHz. The study reports a statistical correlation between spatially averaged absorbed power density and temperature rise when appropriate averaging is applied. Antenna type/configuration was identified as the dominant contributor to variability, exceeding differences from averaging methods or anatomical models.
Model Variability in Assessment of Human Exposure to Radiofrequency Fields
This review examines how variability in computational dosimetry models affects assessment of human RF exposure from MHz to terahertz frequencies, focusing on SAR, absorbed power density, and temperature rise. It reports that anatomical scaling and model choices can drive meaningful differences in predicted SAR (including higher values in children/smaller models), while temperature-rise predictions are especially sensitive to thermophysiological parameters and vascular modeling. The authors indicate that computed variability remains within ICNIRP/IEEE safety margins but argue that uncertainties warrant ongoing research and refinement as new technologies (e.g., 6G) emerge.
Dosimetric Electromagnetic Safety of People With Implants: A Neglected Population?
This dosimetric study evaluated whether existing EM safety guidelines protect individuals with conductive implants by assessing implant-related local field enhancements. Across 10 kHz to 1 GHz, the authors report large increases in psSAR10mg and local electric fields near implants, particularly below 100 MHz. In human anatomical models with implants exposed to an 85 kHz wireless power transfer coil and a 450 MHz dipole, the study reports guideline exceedances and elevated psSAR10mg, while the modeled temperature rise at 450 MHz remained under 0.4 K after six minutes. The authors conclude current guidelines are insufficient for people with implants and propose regulatory changes.
Assessment of spatial-average absorbed power density and peak temperature rise in skin model under localized electromagnetic exposure
This numerical dosimetry study modeled localized RF exposure (3–30 GHz) in multi-layer human skin constructs including skin, fat, and muscle, with an added synthetic blood vessel model. Vascular modeling had negligible impact on peak spatial-averaged absorbed power density and a modest impact on peak temperature rise (about 8% at 3 GHz, <3% above 6 GHz). The authors conclude that including vasculature can refine predictions of localized thermal distributions for dosimetry accuracy.
Assessment of RF EMF Exposure to Car Driver from Monopole Array Antennas in V2V Communications Considering Thermal Characteristics
This modeling study assessed RF-EMF exposure from a 5.9 GHz V2V monopole array antenna integrated into a car roof shark-fin antenna. Using COMSOL simulations with an adult male body model inside a vehicle, the authors estimated localized and whole-body SAR and associated core temperature rise over a 30 min averaging period. Reported SAR and temperature rise values were below ICNIRP occupational thermal-based restrictions, leading the authors to conclude the exposure does not pose a threat under the studied conditions.