Archive
18 postsElectromagnetic Exposure from RF Antennas on Subway Station Attendant: A Thermal Analysis
This paper reports a multiphysics electromagnetic–thermal simulation of radiofrequency (RF) antenna exposure for a subway station attendant, estimating specific absorption rate (SAR) and temperature rise in the trunk and selected organs at 900, 2600, and 3500 MHz. Using a COMSOL-based model with a detailed human anatomy representation, the authors found simulated SAR and temperature increases that they state are well below ICNIRP occupational exposure limits. The study concludes that RF emissions from antennas in the modeled subway environment pose low health risk for female attendants with similar characteristics to the model used, while noting the work is based on simulations rather than measurements.
Effect of fat thickness on subcutaneous temperature field under monopolar radiofrequency
This PubMed-listed study models and experimentally validates how subcutaneous fat thickness affects temperature distribution during monopolar radiofrequency (RF) treatment used for skin tightening and tissue repair. Using finite element analysis (COMSOL) and in vitro pork tissue experiments, the authors report that thicker fat layers reduce achieved intratissue temperatures under the same RF settings. The paper concludes that RF energy parameters may need adjustment based on adipose thickness to reach desired effects while staying within stated epidermal safety limits.
Parametric analysis of electromagnetic wave interactions with layered biological tissues for varying frequency, polarization, and fat thickness
This PubMed-listed study models how RF electromagnetic waves interact with a simplified three-layer tissue structure (skin–fat–muscle) across common ISM bands (433, 915, 2450, 5800 MHz), varying polarization (TE/TM), incidence angle, and fat thickness. Using a custom MATLAB pipeline combining multilayer transmission-line methods, Cole–Cole dielectric parameters, and a steady-state Pennes bioheat solution, the authors estimate reflection, absorption, and resulting temperature rise. The simulations report small temperature increases at lower frequencies (433–915 MHz) and larger superficial heating at 5.8 GHz under the modeled conditions, highlighting how fat thickness and wave parameters modulate dosimetry and thermal outcomes.
Radio Frequency Exposure in Military Contexts: A Narrative Review of Thermal Effects and Safety Considerations
This narrative review focuses on RF exposure in military contexts, emphasizing thermal effects as the established mechanism of harm and discussing safety limits set by bodies such as ICNIRP and IEEE. It reports that whole-body SAR limits (≤4 W/kg) generally prevent dangerous core temperature rises, but localized heating risks may persist for tissues like skin and eyes, especially when thermoregulation is impaired. The review highlights CEM43 as a potentially useful thermal-dose metric but notes complexity for transient exposures and calls for improved models and methods across relevant frequency bands.
Intercomparisons of computed epithelial/absorbed power density & temperature rise in anatomical human face models under localized exposures at 10 & 30 GHz
This dosimetry intercomparison evaluated epithelial/absorbed power density and temperature rise in two high-resolution anatomical human face models under localized antenna exposures at 10 and 30 GHz. The study reports a statistical correlation between spatially averaged absorbed power density and temperature rise when appropriate averaging is applied. Antenna type/configuration was identified as the dominant contributor to variability, exceeding differences from averaging methods or anatomical models.
Development and Testing of a Novel Whole-body Exposure System for Investigative Studies of Radiofrequency Radiation in Rodents (NIEHS)
This NIEHS report describes the development and testing of a flexible whole-body radiofrequency radiation exposure system for rats and mice using updated signals relevant to wireless technologies. In 5-day studies with CDMA- and GSM-modulated signals, no visible behavioral responses were observed and comet assays reported no DNA damage in multiple tissues. The report notes technical challenges, particularly difficulty obtaining reliable body temperature measurements during exposure, and positions the system as a prototype for future mechanistic toxicology studies.
Model Variability in Assessment of Human Exposure to Radiofrequency Fields
This review examines how variability in computational dosimetry models affects assessment of human RF exposure from MHz to terahertz frequencies, focusing on SAR, absorbed power density, and temperature rise. It reports that anatomical scaling and model choices can drive meaningful differences in predicted SAR (including higher values in children/smaller models), while temperature-rise predictions are especially sensitive to thermophysiological parameters and vascular modeling. The authors indicate that computed variability remains within ICNIRP/IEEE safety margins but argue that uncertainties warrant ongoing research and refinement as new technologies (e.g., 6G) emerge.
Thermal and SAR-Based Limits for Human Skin Exposed to Terahertz Radiation
This conference paper uses COMSOL Multiphysics simulations to evaluate thermal and SAR-based exposure limits for modeled human skin exposed to terahertz radiation (0.1–5 THz). The authors report negligible temperature increases at power densities consistent with keeping SAR below 1.6 W/kg, but note that higher power densities can yield minimal heating while producing SAR values above recognized safety thresholds. They conclude that existing sub-THz standards are not directly transferable to the full THz band and call for updated guidelines, especially for prolonged exposure.
Dosimetric Electromagnetic Safety of People With Implants: A Neglected Population?
This dosimetric study evaluated whether existing EM safety guidelines protect individuals with conductive implants by assessing implant-related local field enhancements. Across 10 kHz to 1 GHz, the authors report large increases in psSAR10mg and local electric fields near implants, particularly below 100 MHz. In human anatomical models with implants exposed to an 85 kHz wireless power transfer coil and a 450 MHz dipole, the study reports guideline exceedances and elevated psSAR10mg, while the modeled temperature rise at 450 MHz remained under 0.4 K after six minutes. The authors conclude current guidelines are insufficient for people with implants and propose regulatory changes.
Numerical analysis of the thermal effects on adult with brain pacemaker implantation exposed to WIFI antennas
This numerical study modeled RF exposure from WiFi/5G-type antennas near a 3D brain model with implanted brain pacemakers relevant to Parkinson’s disease. SAR and temperature increases were reported to remain below ICNIRP 2020 limits across modeled conditions, with maxima at a 90° antenna-to-brain angle. Despite compliance with SAR/temperature limits, the authors report modeled thermal strain and tissue displacement that could affect postoperative efficacy, leading them to recommend caution and increased distance from phones.
Assessment of spatial-average absorbed power density and peak temperature rise in skin model under localized electromagnetic exposure
This numerical dosimetry study modeled localized RF exposure (3–30 GHz) in multi-layer human skin constructs including skin, fat, and muscle, with an added synthetic blood vessel model. Vascular modeling had negligible impact on peak spatial-averaged absorbed power density and a modest impact on peak temperature rise (about 8% at 3 GHz, <3% above 6 GHz). The authors conclude that including vasculature can refine predictions of localized thermal distributions for dosimetry accuracy.
Combined effects of constant temperature and radio frequency exposure on Aedes mosquito development
This laboratory study tested combined effects of constant temperature and RF exposure on development of Aedes aegypti and Aedes albopictus from hatching to adult emergence. Temperature was reported as the primary determinant of developmental timing, with optimal development around 30 2 C. RF exposure (900 MHz and 18 GHz) was described as a secondary factor that could accelerate or prolong development depending on temperature, with synergistic shortening at 25 0 C and prolongation under suboptimal conditions.
Numerical Analysis of Human Head Exposure to Electromagnetic Radiation Due to 5G Mobile Phones
This conference paper uses numerical simulations to evaluate near-field exposure and thermal effects in a detailed human head model from a realistic 5G mobile phone operating at 26 GHz. The preliminary modeling suggests moderate, localized temperature increases in superficial tissues. The authors emphasize the need for higher-resolution models, refined tissue segmentation, longer exposure durations, and varied phone placements to better characterize potential impacts.
Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies
This study uses anatomically detailed computational models of a five-year-old girl, a pregnant woman in the third trimester, and a fetus to simulate mobile phone RF exposure inside an elevator cabin. Simulations at 1000 MHz and 1800 MHz across 48 configurations evaluated SAR10g, whole-body SAR, and maximum temperature. The abstract reports that configuration (positioning and phone orientation) can substantially change absorption and temperature metrics and calls for broader scenario testing to inform safety guidance for vulnerable populations.
Characterization of the Core Temperature Response of Free-Moving Rats to 1.95 GHz Electromagnetic Fields
This animal study measured core body temperature in free-moving male and female Sprague Dawley rats during and after 3-hour exposure to 1.95 GHz RF-EMF at multiple whole-body average SAR levels. A measurable thermal response was reported at 4 W/kg, while lower SAR conditions showed smaller or no significant temperature increases. The authors note that temperature dropped quickly after exposure ended, implying post-exposure measurements may underestimate peak heating.
Assessment of RF EMF Exposure to Car Driver from Monopole Array Antennas in V2V Communications Considering Thermal Characteristics
This modeling study assessed RF-EMF exposure from a 5.9 GHz V2V monopole array antenna integrated into a car roof shark-fin antenna. Using COMSOL simulations with an adult male body model inside a vehicle, the authors estimated localized and whole-body SAR and associated core temperature rise over a 30 min averaging period. Reported SAR and temperature rise values were below ICNIRP occupational thermal-based restrictions, leading the authors to conclude the exposure does not pose a threat under the studied conditions.
Single exposure to near-threshold 5G millimeter wave modifies restraint stress responses in rats
In a rat experiment (n=59), a single 40-minute whole-body 28 GHz exposure at near-threshold WBA-SAR levels was evaluated under normal and heat conditions with restraint. After accounting for sham-related restraint stress, exposure was associated with increased serum-free corticosterone 1–3 days later, especially when rectal temperature rose by >1°C. Urinary catecholamines suggested an immediate inhibitory effect on stress response (notably noradrenaline), with heat amplifying effects and linking noradrenaline to tail surface temperature.
Potential influence of geomagnetic activity on blood pressure statistical fluctuations at mid-magnetic latitudes
This six-year time series analysis used over 500,000 blood pressure measurements from two mid-magnetic latitude cities in China to examine associations with geomagnetic activity (Ap index). The study reports that blood pressure fluctuations correlate with geomagnetic activity and share similar periodic patterns, unlike air temperature and PM2.5. The authors conclude that high geomagnetic activity periods may increase risk for individuals with hypertension and note potential clinical and policy relevance.