Archive
20 postsAmbient RF-EMF exposure in surgical operating rooms from telecommunication antennas and Wi-Fi sources
This PubMed-listed study measured ambient radiofrequency electromagnetic field (RF-EMF) levels during surgical operations in 15 hospital operating rooms in Albacete, Spain, focusing on contributions from telecommunication antennas and Wi‑Fi. Using an exposimeter logging every 5 seconds across 67 procedures (~120 hours), the authors report that observed ambient RF‑EMF levels were comparable to other European indoor microenvironment studies. They report exposures in all operating rooms remained below 0.4% of the ICNIRP (2020) reference level, with the highest recorded mean value on the 2.4 GHz Wi‑Fi band.
Exposure to 5G-NR electromagnetic fields affects larval development of Aedes aegypti mosquito
A PubMed-listed study examined whether exposure to 5G New Radio (5G-NR) radiofrequency electromagnetic fields (RF-EMF) at 3.6 GHz affects larval development in Aedes aegypti mosquitoes. Using a custom reverberation-chamber exposure setup and numerical simulations to estimate dose, the authors report slower development at a lower exposure level (46.2 V/m), particularly in nutritionally weakened larvae. At a higher exposure level (182.6 V/m), the study reports dielectric heating that altered development timing and adult size.
Towards a Planetary Health Impact Assessment Framework: Exploring Expert Knowledge and Artificial Intelligence for a RF-EMF Exposure Case-Study
This peer-reviewed article proposes a Planetary Health Impact Assessment (PHIA) framework to evaluate not only direct health effects of radiofrequency electromagnetic fields (RF-EMF) but also potential indirect impacts on human health mediated through ecosystem disruption. Using mobile telecommunication RF-EMF as a case study, the authors and 12 experts built a knowledge graph of hypothesized pathways and compared it with an AI/NLP tool that extracts literature into knowledge graphs. The paper reports that AI can process large volumes quickly but currently needs substantial expert validation due to limitations in precision and context sensitivity, and it highlights potential gaps in the literature on indirect/ecological pathways.
The S4-Mitochondria Axis: A Plausible Unifying Mechanism for Non-Thermal Radiofrequency Electromagnetic Field Effects on Cancer, Male Reproduction, Carcinogenicity, and Immune Dysregulation
RF Safe argues that findings it describes as “high-certainty” from WHO-commissioned systematic reviews show RF-EMF causes malignant heart Schwannomas and brain gliomas in rodents and reduces male fertility. The post proposes a unifying non-thermal mechanism—the “S4-mitochondria axis”—suggesting RF-EMF interacts with the voltage-sensing S4 helix of voltage-gated ion channels (VGICs) and is amplified by mitochondrial density. It concludes that the combination of animal evidence and a proposed mechanism supports precautionary revisions to exposure guidelines and more mechanistic research.
Visualizing radiofrequency electromagnetic field exposure through Voronoi-based maps
This exposure-assessment study proposes a Voronoi-diagram approach to visualize RF-EMF exposure across a city using personal exposimeter measurements of RMS electric field at seed points. Most mapped areas corresponded to about 1.9 V/m, with a maximum reported value of 11.4 V/m, all below the cited ICNIRP guideline level. The authors conclude the method is useful for communicating spatial variability, while also noting broader literature discussing potential health risks from EMF exposure.
Differential metabolic responses of mouse Leydig and spermatogonia cells to radiofrequency electromagnetic field exposure
This in vitro study used LC-MS metabolomics to assess how continuous versus intermittent RF-EMF irradiation affects mouse Leydig (TM3) and spermatogonia (GC-1) cells. The authors report stronger metabolic disturbances in TM3 cells under continuous exposure, including changes in amino acid and glutathione-related pathways, while intermittent exposure mainly affected fatty acyl and purine-related metabolism. GC-1 cells were reported to be less sensitive, and ADP changes were proposed as a potential metabolic signature. The authors interpret these metabolic disturbances as suggesting potential reproductive health risks.
3.5GHz radiofrequency electromagnetic fields (RF-EMF) on metabolic disorders in Drosophila melanogaster
This animal study used metabolomics to assess metabolic changes in male Drosophila melanogaster exposed to 3.5 GHz RF-EMF at 0.1, 1, and 10 W/m². It reports disruptions in four metabolic pathways and 34 differential metabolites, with significant decreases in several metabolites including GABA, glucose-6-phosphate, and AMP. The authors interpret the findings as suggesting RF-EMF-related metabolic disturbance, while noting no clear dose-dependent pattern.
Bacterial Adaptation to Radiofrequency Electromagnetic Fields Based on Experiences from Ionizing Radiation
This 2025 review summarizes historical and modern literature on how bacteria may adapt to radiofrequency electromagnetic fields from common sources such as mobile phones and Wi-Fi. It argues that RF-EMF exposure can influence bacterial survival mechanisms and could potentially compromise therapeutic interventions by promoting increased resistance. The authors frame these possibilities as a public health concern and call for continued research and precaution.
Systematic reviews and meta-analyses for the WHO assessment of health effects of exposure to radiofrequency electromagnetic fields, an introduction
This editorial introduces a special issue supporting the WHO assessment of health effects from RF-EMF exposure, based on nine protocols and twelve systematic reviews developed over four years by more than 80 experts. It summarizes that human evidence for major cancers was moderate-certainty for no or only small effects, with lower certainty for some cancer sites, while animal evidence reported higher-certainty effects for several cancer types and adverse effects on male fertility. For cognition, symptoms, and oxidative stress, certainty was generally lower and findings more variable, and the editors note ongoing methodological challenges and the possibility of unidentified mechanisms.
Radiofrequency Electromagnetic Field Emissions and Neurodevelopmental Outcomes in Infants: A Prospective Cohort Study
This prospective cohort study followed 105 neonates/infants for one year and measured household RF-EMF using a selective radiation meter, categorizing exposure into tertiles. Higher household RF-EMF exposure was associated with lower ASQ-3 neurodevelopmental scores, particularly in motor and problem-solving domains, and higher odds of monitor/refer classifications for fine motor and problem-solving. The abstract notes these associations persisted after adjustment for low birth weight, though exposure was measured at a single time point and key confounders (e.g., prenatal phone use, parental interaction) were not assessed.
Impact of Radiofrequency Electromagnetic Fields on Cardiac Activity at Rest: A Systematic Review of Healthy Human Studies
This systematic review evaluated evidence on RF-EMF exposure and cardiac activity (heart rate and heart rate variability) in healthy humans at rest. Across 28 studies spanning 100 to 110,000 MHz and exposures from minutes to a week, most studies reported no significant effects on resting heart rate, and HRV findings were largely null under calm conditions. Some position-dependent HRV changes were reported, and the authors note possible effects during physiological challenges, but conclude evidence is insufficient for firm conclusions beyond resting healthy populations.
Radiofrequency electromagnetic fields reduce bumble bee visitation to flowers
This blinded, two-year study examined whether RF-EMF exposure at 2.4 and 5.8 GHz affects pollinator visitation to Salvia and Lavandula. The authors report no significant effect on honey bee visitation rates. They report a significant reduction in bumble bee visits per observation period under RF-EMF exposure, which they frame as a potential risk warranting further long-term research.
Exposure to radiofrequency electromagnetic fields and IARC carcinogen assessment: Risk of Bias preliminary literature assessment for 10 key characteristics of human carcinogens
This review examined experimental literature on whether RF-EMF exposures within ICNIRP (2020) limits affect IARC key characteristics of human carcinogens. It identified 159 articles and found that 38% of in vitro/in vivo measurements reported statistically significant effects, but higher study quality was associated with fewer reported effects and there was no consistent exposure-response pattern. The authors state that study diversity and generally poor quality prevent high-confidence conclusions for most key characteristics, while recommending replication of the few higher-quality positive findings under stringent standards.
A novel approach for assessments of radiofrequency electromagnetic fields exposure in buildings near telecommunication infrastructure
This paper proposes a new methodology to better assess indoor RF-EMF exposure in buildings near telecommunication base station antennas by refining measurement-point selection. Implemented in four multi-storey buildings in Natal, Brazil, indoor electric field peaks and averages were reported to be substantially higher than ground-level measurements. Although the highest indoor levels remained below ICNIRP recommended limits, the authors argue current regulatory evaluation methods may underestimate indoor exposure in certain building locations.
Auto-Induced Downlink Radiofrequency Electromagnetic Field Exposure at 3.5 GHz With Focusing Near the Head
This exposure-assessment study uses FDTD simulations to evaluate auto-induced downlink RF-EMF exposure at 3.5 GHz when downlink energy is focused toward user equipment near the head. Exposure varied substantially by device position (ear, eyes, nose) and by the precoding technique used. The authors report that the choice of normalization strategy can produce cases where ICNIRP basic restrictions are exceeded even when reference levels appear compliant, motivating a precautionary framing for compliance assessment.
In-Situ Measurements of Radiofrequency Electromagnetic Fields Measurements Around 5G Macro Base Stations in the UK
This exposure assessment performed RF spot measurements in line-of-sight to 56 active 5G macro base stations across 30 publicly accessible UK locations. Power density was measured across 420 MHz–6 GHz under multiple scenarios (background, streaming, downlink speed test, and extrapolated SS-RSRP decoding). Reported total RF and 5G-specific levels were within 1998 ICNIRP public reference levels, with 4G downlink contributing most of the measured exposure.
The Influence of an Electromagnetic Field at a Radiofrequency of 900 MHz on the Behavior of a Honey Bee
This laboratory study examined whether a 900 MHz radiofrequency electromagnetic field (RF-EMF) influences the behavior of newly emerged honey bee workers. Compared with controls, the exposed groups showed behavioral changes, with some parameters showing statistically significant differences seven days after exposure. The authors frame RF-EMF as a potential environmental stressor and call for further research, including gene expression analyses.
What is the effect of alarmist media and radiofrequency electromagnetic field (RF-EMF) exposure on salivary cortisol and non-specific symptoms?
This randomized study tested whether viewing alarmist media and participating in an open-label RF-EMF provocation trial influenced non-specific symptoms and salivary cortisol. Participants who believed they were being exposed reported more symptoms than those who believed they were not exposed. The study did not find a replicated effect of alarmist media or open-label RF-EMF exposure on salivary cortisol, suggesting reported symptoms were more related to perception than cortisol-measured stress.
Potential Impacts of Radiofrequency Electromagnetic Fields on the Central Nervous System, Brain Neurotransmitter Dynamics and Reproductive System
This review discusses potential impacts of radiofrequency electromagnetic fields from technologies such as Wi‑Fi and mobile phones on the central nervous system, neurotransmitter dynamics, and reproductive health. It describes proposed mechanisms including oxidative stress, thermal effects, altered neurotransmitter activity, ion channel changes, and neuronal apoptosis, while acknowledging conflicting evidence. The authors note that Wi‑Fi RF exposure has not been confirmed to exceed safety guidelines but argue that updated standards and long-term studies are needed, particularly for children/adolescents and in the context of expanding technologies such as 5G.
Effects of radiofrequency electromagnetic field exposure on cancer in laboratory animal studies, a systematic review
This systematic review evaluated RF EMF exposure and cancer outcomes in experimental animals, including chronic cancer bioassays and tumor-promotion designs. Across 52 included studies, the authors report high certainty of evidence for increased malignant heart schwannomas and gliomas in male rats, and moderate certainty for increased risks of several other tumor types. Many other organ systems showed no or minimal evidence of carcinogenic effects, and the authors note challenges in translating animal findings to human risk assessment due to exposure and mechanistic uncertainties.