Archive
10 postsDevelopment and Testing of a Novel Whole-body Exposure System for Investigative Studies of Radiofrequency Radiation in Rodents (NIEHS)
This NIEHS report describes the development and testing of a flexible whole-body radiofrequency radiation exposure system for rats and mice using updated signals relevant to wireless technologies. In 5-day studies with CDMA- and GSM-modulated signals, no visible behavioral responses were observed and comet assays reported no DNA damage in multiple tissues. The report notes technical challenges, particularly difficulty obtaining reliable body temperature measurements during exposure, and positions the system as a prototype for future mechanistic toxicology studies.
Male Reproductive and Cellular Damage After Prenatal 3.5 GHz Radiation Exposure: One-Year Postnatal Effects
This animal study examined whether prenatal exposure to 3.5 GHz radiofrequency radiation (2 hours/day) affects male reproductive outcomes later in life. Male rat offspring assessed at 12 months showed multiple adverse testicular and cellular findings in exposed groups versus sham controls, including impaired spermatogenesis markers, increased abnormal sperm morphology, increased DNA damage, and increased apoptosis, with full-gestation exposure generally most pronounced. The authors interpret the results as evidence of persistent reproductive toxicity from prenatal exposure and call for further mechanistic work and precautionary actions.
Evaluation of Personal Radiation Exposure from Wireless Signals in Indoor and Outdoor Environments
This exposure assessment measured personal RF electric field strength in multiple indoor and outdoor micro-environments in Malaysia using an ExpoM-RF 4 meter and modeled exposure with machine learning (FCNN, XG Boost) and linear regression. Reported exposures were usually below the stated public limit (61.4 V/m), but maximum values in dense urban areas with many base stations were reported to approach 56.7365 V/m. The authors frame near-threshold maxima in high-density areas as a potential health risk and recommend caution and monitoring.
The effects of short-term and long-term 2100 MHz radiofrequency radiation on adult rat auditory brainstem response
This animal study examined 2100 MHz radiofrequency radiation exposure effects on auditory brainstem responses and brain oxidative/ultrastructural markers in adult rats. The 1-week exposure group showed prolonged ABR latencies and biochemical/structural changes consistent with oxidative stress and cellular injury. The authors report no harmful effects in the 10-week exposure condition with rest days under the studied protocol.
Effects of non-ionizing radiation on the thyroid gland in rats
This animal study exposed Sprague-Dawley rats (including pregnant females and offspring) to 2.45 GHz Wi-Fi or mobile jammer radiation for 2 hours daily over two weeks and assessed thyroid hormones and thyroid histology. The abstract reports significant changes in T4 in exposed adult males and significant differences in T3 among male offspring exposed to jammer radiation. Histopathology reportedly showed disrupted thyroid follicular structure in exposed rats. The authors conclude these findings support a potential link between non-ionizing radiation exposure and altered thyroid endocrine and histological parameters.
A Mini-Review of the Potential Health Impacts of Indoor Radiation Exposure in Companion Animals
This mini-review discusses indoor radiation sources that may affect companion animals, including radon, radionuclides in feed, radiofrequency sources (phones, Wi-Fi, pet tracking devices), solar radiation, and extremely low frequency radiation. It reports that indoor radiation may negatively impact companion animal health and well-being. The authors conclude that preventive and precautionary measures are necessary to protect companion animals from indoor radiation exposure.
Understanding Electromagnetic Hypersensitivity (EHS) From Mobile Phone Radiofrequency Radiation (RFR) Exposure: A Mixed-Method Study Protocol
This paper presents a mixed-method study protocol examining electromagnetic hypersensitivity (EHS) in relation to mobile phone radiofrequency radiation exposure among undergraduate students. The quantitative component aims to identify predictors of EHS using a biopsychosocial model, while the qualitative component explores individual experiences through in-depth interviews. The abstract provides study design details and sample size but does not report study results.
The effects of radiofrequency radiation on male reproductive health and potential mechanisms (Review)
This narrative review summarizes human and animal research on radiofrequency (RF) radiation exposure (e.g., mobile phones, Wi‑Fi, occupational sources) and male reproductive outcomes. It reports that the literature links RF exposure with reduced sperm quality and increased DNA damage, often alongside oxidative stress and other proposed biological changes. Although inconsistencies are acknowledged, the authors conclude the overall evidence suggests harmful associations and call for standardized, long-term studies and reconsideration of guidelines.
Effects of radiofrequency radiation exposure on blood-brain barrier permeability in male and female rats
This rat study tested whether acute exposure to 0.9 and 1.8 GHz continuous-wave radiofrequency radiation alters blood-brain barrier permeability. Using Evans-blue/albumin as a tracer, the authors report no BBB leakage in exposed female rats but a significant increase in albumin in exposed male rat brains versus sham. The authors interpret this as suggesting BBB/vascular permeability changes in males at SAR levels stated to be below international limits.
Genetic damage in mammalian somatic cells exposed to radiofrequency radiation: a meta-analysis of data from 63 publications (1990-2005)
A meta-analysis of 63 publications assessed whether radiofrequency (RF) radiation exposure is associated with genetic damage in mammalian somatic cells using multiple genotoxicity endpoints. Overall differences between RF-exposed and control conditions were reported as small, though statistically significant increases were observed for some endpoints under certain exposure conditions. Mean chromosomal aberration and micronucleus indices were reported to fall within historical spontaneous levels, and the analysis found considerable evidence of publication bias.