Archive
3 postsElectromagnetic wireless remote control of mammalian transgene expression
This animal proof-of-concept study describes an engineered nanoparticle–cell interface (EMPOWER) enabling wireless regulation of transgene expression using a 1-kHz magnetic field. Chitosan-coated multiferroic nanoparticles reportedly generate intracellular ROS that activates KEAP1/NRF2 biosensors connected to ROS-responsive promoters. In a mouse model of type 1 diabetes, implanted engineered cells expressing an EMPOWER-controlled insulin system reportedly normalized blood glucose in response to a weak magnetic field.
Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites
This review/overview argues that ultrafine particulate matter and industrial nanoparticles can reach the brain and accumulate in sleep and arousal regulatory regions, including orexinergic neuron hubs. It reports that ferromagnetic particles in these regions show motion responsive to low-intensity electromagnetic fields (30–50 μT) and describes links to sleep disturbances and neurodegenerative disease markers in young urban residents. The authors frame combined air pollution nanoparticle exposure and low-level EMF as a significant threat and call for monitoring and protective strategies.
Enhancement Effect of Static Magnetic Field on Bactericidal Activity
This in vitro study reports that a static magnetic field (SMF) combined with paramagnetic calcium-polypyrrole nanoparticles (Ca-PPy) markedly increases bactericidal activity against E. coli and S. aureus. The authors attribute the enhanced killing to increased reactive oxygen species generation and associated membrane disruption, with computational analysis suggesting altered radical-pair transitions under magnetic fields. The abstract frames SMF as potentially biocompatible and useful for bactericidal applications, while also noting broader biological impacts of electromagnetic fields.