Archive

3 posts

Flora and fauna: how nonhuman species interact with natural and man-made EMF at ecosystem levels and public policy recommendations

Research PubMed: RF-EMF health Dec 8, 2025

This PubMed-listed article argues that ambient nonionizing EMF exposures (especially RF-EMF) have increased substantially over the past 60 years and are now pervasive, including from terrestrial networks and low-earth-orbit satellites. It claims these chronic, low-intensity exposures are biologically active and may disrupt critical functions in nonhuman species that rely on geomagnetic cues. The paper discusses nonhuman physiologies and proposes public policy recommendations for wildlife protection, including mitigation and creation of EMF-reduced zones during sensitive periods such as migration and breeding.

Mechanism first explanation of how the plasma membrane potential controls immune responses

Independent Voices RF Safe Nov 4, 2025

An RF Safe article argues that plasma membrane potential (Vm) is a key control variable for immune cell behavior by shaping ion driving forces, especially Ca2+ influx through CRAC channels and K+ channel–mediated hyperpolarization. It describes proposed links between Vm-regulated ion flux and downstream immune functions such as T-cell activation (NFAT/NF-κB signaling), macrophage polarization, respiratory burst capacity, and NLRP3 inflammasome activation. The piece also mentions that external electric fields can influence T-cell migration and activation markers under some conditions, but it does not present new experimental data in the excerpt provided.

Female Crabs Are More Sensitive to Environmentally Relevant Electromagnetic Fields from Submarine Power Cables

Research RF Safe Research Library Jan 1, 2025

This controlled laboratory study examined sex-specific behavioral responses of juvenile shore crabs to magnetic fields intended to represent submarine power cable EMFs. Females showed consistent attraction to EMF-exposed zones across 500–3,200 μT exposures, whereas males showed no consistent spatial preference. The authors suggest such sex-specific sensitivity could disrupt female-driven behaviors relevant to migration and reproduction, with potential ecological implications.

Page 1 / 1