Archive
14 postsFrom Bell’s Photophone to the Light Age: How Wireless Took a Wrong Turn — and How We Correct It
This RF Safe commentary argues that wireless communications “took a wrong turn” by prioritizing radiofrequency/microwave transmission over light-based approaches, citing Alexander Graham Bell’s 1880 photophone as an alternative model. It suggests that widespread, continuous RF exposure in modern environments is undesirable and proposes light-based, room-scale wireless as more biologically compatible. The piece also speculates about a historical association between Heinrich Hertz’s close-range RF experiments and his later fatal illness, while acknowledging there is no controlled evidence proving causation.
HHS Is Breaking Federal Law Public Law 90-602
An RF Safe commentary argues that the U.S. Department of Health and Human Services (HHS) is violating Public Law 90-602 by failing to continuously update radiation-safety standards, asserting that no formal revisions have occurred since the mid-1980s. The post links this alleged inaction to continued public exposure from wireless technologies and calls for renewed long-term research and stricter exposure limits. It also claims the National Toxicology Program (NTP) was shut down in 2024 and references a 2021 court decision criticizing FCC RF rules, urging congressional action and new legislation.
Fermi‑paradox: Hertzification as a Great Filter
This RF Safe commentary proposes a speculative “bioelectric hypothesis” for the Fermi paradox: that widespread, continuous use of man-made radiofrequency/microwave emissions (“hertzification”) could act as a slow “Great Filter” that causes technological civilizations to decline or go silent. The author argues that modern RF environments create an unprecedented, omnipresent exposure for organisms and suggests potential biological vulnerability via voltage-gated ion channels. The piece is framed as an exploration rather than a reported study and does not present new empirical data in the provided excerpt.
Role of visual and non-visual opsins in blue light-induced neurodegeneration in Drosophila melanogaster
This animal study used Drosophila knockout lines to examine whether visual (Rh1) versus non-visual (Rh7) opsins contribute to blue-light-associated neural damage. Flies were continuously exposed to 488 nm blue light from egg deposition to 20 days, and brain DNA damage and vacuolisation were assessed. The study reports greater DNA damage and neurodegeneration markers in Rh1 knockout flies than in wild-type or Rh7 knockout flies, and concludes Rh1 is a predominant mediator of blue-light-induced neurotoxicity in the fly CNS.
Empowering the Serbian EMF RATEL System for Monitoring RF-EMF Through Drive Test
This engineering/monitoring paper describes enhancements to the Serbian EMF RATEL system, which has continuously monitored RF-EMF since 2017, by adding drive test functionality to improve spatial coverage. The authors report preliminary quantitative drive test measurements and validation of the upgraded approach. The work emphasizes that characterizing spatial and temporal RF-EMF patterns can support exposure assessment relevant to public health risk evaluation.
The effect of Wi-Fi on elastic and collagen fibres in the blood vessel wall of the chorioallantoic membrane
This animal experimental study exposed chicken embryos (CAM) continuously to 2.4 GHz Wi-Fi at an average power density of 300 μW/m2 for 9 or 14 embryonic days. H&E staining reportedly showed no significant structural differences in large vessel walls versus controls. However, special staining reported decreased optical density of elastic fibers at both time points and changes in collagen fiber optical density (increase at day 9, decrease at day 14). The authors conclude Wi-Fi exposure can alter fibrous vessel wall components and suggest potential relevance to cardiovascular disorders.
Differential metabolic responses of mouse Leydig and spermatogonia cells to radiofrequency electromagnetic field exposure
This in vitro study used LC-MS metabolomics to assess how continuous versus intermittent RF-EMF irradiation affects mouse Leydig (TM3) and spermatogonia (GC-1) cells. The authors report stronger metabolic disturbances in TM3 cells under continuous exposure, including changes in amino acid and glutathione-related pathways, while intermittent exposure mainly affected fatty acyl and purine-related metabolism. GC-1 cells were reported to be less sensitive, and ADP changes were proposed as a potential metabolic signature. The authors interpret these metabolic disturbances as suggesting potential reproductive health risks.
Cluster Analysis of RF-EMF Exposure to Detect Time Patterns in Urban Environment: A Model-Based Approach
This paper applies a model-based clustering approach (Log-Normal Mixture Model) to continuous RF-EMF monitoring data from the Serbian EMF RATEL network in Novi Sad to characterize temporal exposure patterns. The analysis reports separation of night versus day exposure values and identification of daytime periods where exposure persists longer. The work is positioned as supporting improved understanding of when and where elevated exposures occur in urban environments.
Perspectives on terahertz honeybee sensing
This paper describes measurements and simulations to support terahertz (THz) sensing of European honey bees for environmental monitoring. It reports dielectric characterization of bee body parts across 1–500 GHz, scattering-based validation of 3D-printed bee mockups, and THz imaging demonstrating detailed anatomical visualization. The work includes dosimetric simulations at 300 GHz to evaluate feasibility of non-invasive, continuous monitoring and notes potential relevance to assessing high-frequency EMF impacts on insect health and habitat safety.
Exposure to 26.5 GHz, 5G modulated and unmodulated signal, does not affect key cellular endpoints of human neuroblastoma cells
This in vitro study examined whether 26.5 GHz millimeter-wave exposure (continuous wave and 5G-modulated) affects key cellular endpoints in human neuroblastoma cells. Cells were exposed for 3 hours at SAR 1.25 W/kg using a reverberation-chamber system, with assessments including cell cycle and DNA damage. The study reports no effects from exposure alone or when combined with the oxidant menadione, while noting that additional studies across varied conditions are needed.
5G EMF Exposure at 3.6 GHz in Greece Using Data From Frequency-Selective Monitoring Sensors
This exposure-assessment study analyzed two years of continuous frequency-selective monitoring from 13 sensors in the five largest cities in Greece, focusing on the 3.6 GHz 5G band. It reports a gradual increase in 3.6 GHz environmental EMF levels over time and greater variability than legacy cellular bands, with 30-minute averaging reducing observed fluctuations. Despite the upward trend and variability, all measurements were reported to remain well below Greek and ICNIRP reference levels, and the authors emphasize the value of continuous monitoring as 5G deployment expands.
An approach for annual analysis of EMF exposure in highly sensitive areas of kindergartens and schools
This paper proposes a time-averaging approach for analyzing long-term EMF exposure using time-series data from three sensors in a regulatory monitoring network. Sensors were installed at two kindergartens and one elementary school, and analyses reported daily/weekly patterns, differences between weekdays and weekends, and site-specific annual increases/decreases. The work emphasizes the value of continuous monitoring in sensitive areas, while not directly assessing health outcomes.
Evaluation of the Thyroids of Offsprings Exposed to 2450 MHz Radiofrequency Radiation During Pregnancy: A Sixth Month Data
This animal study examined whether continuous prenatal exposure to 2450 MHz radiofrequency radiation (simulating Wi‑Fi) affects thyroid tissue in rat offspring at 6 months. The exposed group showed significantly increased mononuclear cell infiltration and vascular congestion in thyroid histology. TUNEL-positive cell percentage and H2A.X antibody levels did not differ significantly between groups.
Effects of radiofrequency radiation exposure on blood-brain barrier permeability in male and female rats
This rat study tested whether acute exposure to 0.9 and 1.8 GHz continuous-wave radiofrequency radiation alters blood-brain barrier permeability. Using Evans-blue/albumin as a tracer, the authors report no BBB leakage in exposed female rats but a significant increase in albumin in exposed male rat brains versus sham. The authors interpret this as suggesting BBB/vascular permeability changes in males at SAR levels stated to be below international limits.