Archive
5 postsThe effects of acute and chronic exposure of 3G UMTS 2100 MHz radiofrequency radiation on rat mismatch negativity
This rat study examined acute (1-week) and chronic (10-week) exposure to 2100 MHz radiofrequency radiation (3G UMTS-like) and assessed auditory mismatch negativity (MMN) alongside biochemical and histological brain measures. The abstract reports that acute exposure was associated with reduced MMN-related electrophysiological parameters and changes in GluR2 and GFAP with observed brain ultrastructural alterations. Chronic exposure showed opposite protein trends and enhanced MMN parameters versus chronic controls, and lipid peroxidation was not significantly different.
Biological responses to 30 mT static magnetic field in young and 36-month-old rats
This animal study examined subchronic exposure to a 30 mT static magnetic field for 10 weeks in young and 36-month-old rats (n=27). The abstract reports decreased lymphocyte counts and increased NLR in both age groups, with PLR increases limited to young rats and platelet decreases reported in older rats. The authors interpret the findings as age-dependent immune/inflammation modulation, framing potential proinflammatory risk in younger animals and immunosuppressive/stress-related effects in older animals.
U.S. policy on wireless technologies and public health protection: regulatory gaps and proposed reforms
This policy-focused paper contends that U.S. oversight of radiofrequency radiation from wireless technologies is outdated and insufficient, with exposure limits and testing approaches not aligned with modern long-term, chronic exposure scenarios. It emphasizes gaps in protections for children, pregnancy, vulnerable populations, workers, and wildlife, and describes limited monitoring, research, and enforcement capacity. The author proposes reforms to improve independent research, science-based limits, surveillance, and regulatory transparency.
Review of the evidence on the influence of Wi-Fi 2.4 GHz radiation on oxidative stress and its possible relationship with Alzheimer's disease
The review states there is no scientific consensus on whether Wi‑Fi (2.4/5 GHz) contributes to Alzheimer's disease through oxidative stress, and that existing results are mixed and inconclusive. It discusses an indirect analysis linking oxidative-stress-responsive genes after 2.4 GHz exposure with genes associated with Alzheimer's disease. The authors suggest chronic exposure could affect regulation of neurodegeneration-related genes (e.g., GSK3B, APOE), while emphasizing that a direct relationship has not been demonstrated and more research is needed.
Oxidative stress and testicular damage induced by chronic exposure to 35.5 GHz millimeter wave radiation in male Wistar rats
This randomized controlled animal study examined chronic 35.5 GHz millimeter wave exposure in male Wistar rats (2 hours/day for 60 days) compared with control and sham groups. The exposed group showed reduced sperm count and viability along with testicular histopathological changes. Oxidative stress markers shifted toward increased lipid peroxidation and reduced antioxidant defenses, and comet assay results indicated increased DNA damage.