Archive
23 postsElectromagnetic Exposure from RF Antennas on Subway Station Attendant: A Thermal Analysis
This paper reports a multiphysics electromagnetic–thermal simulation of radiofrequency (RF) antenna exposure for a subway station attendant, estimating specific absorption rate (SAR) and temperature rise in the trunk and selected organs at 900, 2600, and 3500 MHz. Using a COMSOL-based model with a detailed human anatomy representation, the authors found simulated SAR and temperature increases that they state are well below ICNIRP occupational exposure limits. The study concludes that RF emissions from antennas in the modeled subway environment pose low health risk for female attendants with similar characteristics to the model used, while noting the work is based on simulations rather than measurements.
Ambient RF-EMF exposure in surgical operating rooms from telecommunication antennas and Wi-Fi sources
This PubMed-listed study measured ambient radiofrequency electromagnetic field (RF-EMF) levels during surgical operations in 15 hospital operating rooms in Albacete, Spain, focusing on contributions from telecommunication antennas and Wi‑Fi. Using an exposimeter logging every 5 seconds across 67 procedures (~120 hours), the authors report that observed ambient RF‑EMF levels were comparable to other European indoor microenvironment studies. They report exposures in all operating rooms remained below 0.4% of the ICNIRP (2020) reference level, with the highest recorded mean value on the 2.4 GHz Wi‑Fi band.
Why RF Safe’s TruthCase Refuses the “99% Blocking” Game — and Why That’s the Point
RF Safe argues that “anti-radiation” phone case marketing based on universal “99% blocking” claims is misleading because real-world phone emissions vary with signal conditions, orientation, and how a case affects the antenna. The post positions RF Safe’s TruthCase/QuantaCase as more credible specifically because it refuses to advertise a single percentage reduction and instead emphasizes design constraints intended to avoid prompting a phone to increase transmit power. It cites a KPIX 5 (CBS San Francisco) test as an example of how flip cases can reduce exposure in some configurations but potentially increase it in others when used differently than intended.
RF Safe’s Market Position and Industry Skepticism
RF Safe argues that while it has operated since 1998 and emphasizes “physics-based” design and education, the broader anti-radiation phone case market is widely criticized for hype and potentially misleading “blocking” claims. The post says some experts consider the category ineffective or even counterproductive, including concerns that poorly designed cases may interfere with antennas and prompt phones to increase transmit power. It positions RF Safe’s QuantaCase/TruthCase as an outlier for transparency and design choices, while noting that independent 2026 testing is limited and some claims rely on demonstrations, older tests, and design critiques.
Best Anti‑Radiation Phone Case 2026: Why QuantaCase (RF Safe) Is the Stand‑Out Choice
RF Safe argues that many “anti-radiation” phone cases use misleading marketing (e.g., fabric-swatch tests, vague “FCC tested” claims) and that some designs may cause phones to increase transmit power if they interfere with antennas. The article provides a checklist of red flags (magnets/metal plates, detachable shields, unclear orientation instructions) and emphasizes behavioral steps to reduce RF exposure. It promotes RF Safe’s QuantaCase as a “directional shielding” design intended to reduce exposure on the body-facing side while avoiding signal blockage that could prompt higher power output.
Massive assessment of exposure to 5G electromagnetic fields in France: a 5-year synthesis
This paper reports results from a large-scale, multi-phase measurement campaign in mainland France assessing changes in RF exposure associated with 5G deployment from 2020 to 2024. Using more than 24,000 on-ground measurements in direct view of 5G antennas, it finds small average increases in broadband exposure and increased contributions from 5G-related bands over time. The 3.5 GHz band contribution increased but remained a secondary contributor compared with legacy 800/900 MHz bands, and exposure during active downloading was higher than in idle mode.
This piece does not argue that radiofrequency (RF) electromagnetic fields “cause” any single disease.
An RF Safe commentary argues that persistent, pulsed “non-native” RF electromagnetic noise can disrupt biological “timing coherence,” leading to downstream “fidelity losses,” particularly in electrically active tissues. It also emphasizes that smartphones are adaptive RF systems that change transmit power and modulation, so accessories that detune antennas or distort near-field conditions may cause phones to transmit harder. The piece cites FTC warnings that partial-shield products can be ineffective and may increase emissions by interfering with signal quality, and it argues that material shielding claims do not directly translate to real-world exposure outcomes.
How non‑native electromagnetic fields, biological timing, and policy lock in converge — and why the Light Age is the only coherent exit
RF Safe argues that modern radiofrequency (RF) exposures are complex (adaptive, nonlinear, geometry- and near-field–dependent) and that biological effects, if any, may be better understood as “timing/coherence” disruptions rather than direct single-cause disease claims. The piece cautions against simplistic “percent blocking” marketing for anti-radiation accessories, claiming real-world emissions can change when antenna boundary conditions are altered. It proposes an explanatory framework (“S4–Mito–Spin”) and suggests a policy/technology “exit” via indoor photonics (Li‑Fi/optical wireless) rather than continued expansion of microwave-based systems, while explicitly stating it does not claim RF causes specific human diseases or that products protect health.
The True Legacy of RF Safe as a Pioneer in EMF Safety Advocacy: Beyond Bias
This RF Safe article argues that the organization’s EMF safety advocacy should not be dismissed as “biased” or “commercially motivated,” framing its work as rooted in its founder’s personal experience and long-term activism. It recounts founder John Coates’ claim that prenatal RF exposure contributed to his infant daughter’s neural tube defect, and presents RF Safe as combining advocacy, scientific synthesis, and product development. The piece also claims RF Safe’s antenna work helped prompt a 2003 FCC rule change recognizing directional antenna approaches to reduce energy toward users while maintaining performance.
Beyond Bias: The True Legacy of RF Safe as a Pioneer in EMF Safety Advocacy
This RF Safe article defends the organization against accusations of bias, framing its EMF safety advocacy as rooted in founder John Coates’ personal tragedy and long-term efforts in product development, research synthesis, and policy reform. It claims RF Safe helped drive an FCC rule change related to antenna design and promotes various exposure-reduction accessories and training tools. The piece argues that non-thermal biological effects of RF/ELF fields are being overlooked by regulators and calls for policy changes such as revisiting Section 704 of the 1996 Telecom Act and shifting health oversight away from the FCC.
TruthCase™ by RF SAFE QuantaCase
RF Safe promotes its TruthCase™ (QuantaCase®) phone case as a "training tool" and "physics-first" product intended to reduce RF exposure through correct phone orientation and design, while criticizing many "anti-radiation" cases as potentially increasing exposure by detuning antennas. The post also argues that current RF safety policy relies on "1990s, heat-only limits" and calls for stronger protections, especially for children. It presents a proposed biological mechanism framework ("S4–Mito–Spin") describing how weak RF/ELF fields might interact with voltage-gated channels, mitochondria/ROS pathways, and spin-sensitive redox chemistry, but does not provide study details in the excerpt.
Intercomparisons of computed epithelial/absorbed power density & temperature rise in anatomical human face models under localized exposures at 10 & 30 GHz
This dosimetry intercomparison evaluated epithelial/absorbed power density and temperature rise in two high-resolution anatomical human face models under localized antenna exposures at 10 and 30 GHz. The study reports a statistical correlation between spatially averaged absorbed power density and temperature rise when appropriate averaging is applied. Antenna type/configuration was identified as the dominant contributor to variability, exceeding differences from averaging methods or anatomical models.
Associations between Individual and Geospatial Characteristics and Power of 4G Signals Received by Mobile Phones
This exposure assessment study analyzed smartphone-logged 4G LTE RSSI and GPS data from adults in France to identify determinants of downlink signal strength. RSSI varied with geospatial factors (distance to antennas, antenna density, urbanicity) and time of day, and was also influenced by technical smartphone parameters. The study reports an estimated electric field strength derived from RSSI, but notes high uncertainty in this conversion.
Numerical analysis of the thermal effects on adult with brain pacemaker implantation exposed to WIFI antennas
This numerical study modeled RF exposure from WiFi/5G-type antennas near a 3D brain model with implanted brain pacemakers relevant to Parkinson’s disease. SAR and temperature increases were reported to remain below ICNIRP 2020 limits across modeled conditions, with maxima at a 90° antenna-to-brain angle. Despite compliance with SAR/temperature limits, the authors report modeled thermal strain and tissue displacement that could affect postoperative efficacy, leading them to recommend caution and increased distance from phones.
Traceable Assessment of the Absorbed Power Density of Body Mounted Devices at Frequencies Above 10 GHz
This paper presents a traceable experimental dosimetry method to measure absorbed power density (APD) from body-mounted wireless devices at frequencies above 10 GHz. It combines a miniaturized broadband probe, a composite skin-equivalent phantom, and reconstruction/calibration procedures, with validation using reference antennas. The approach is reported as validated for 24–30 GHz and extendable to 10–45 GHz, supporting regulatory-type testing aligned with international safety standards.
Assessing exposure from different vehicular antennas in military applications: a computational study
This computational study modeled electromagnetic exposure for military personnel near vehicular communication antennas across HF, VHF, and UHF scenarios. All simulated configurations reportedly met ICNIRP Basic Restrictions, though some exceeded ICNIRP Reference Levels in certain positioning and frequency combinations. The authors conclude that safety is generally maintained across the modeled conditions and that results can inform operational guidance and safety regulations.
Exploring research trends in health effects of 5G antennas: a bibliometric analysis
This paper presents a bibliometric analysis of Web of Science literature (2012–2025) on potential health effects related to 5G antennas. It reports a marked increase in publications in the past five years, with substantial attention to dosimetric metrics (SAR and power density) and their regulatory limits. The authors forecast continued growth in the field and emphasize the need for ongoing research and interdisciplinary collaboration focused on potential health risks and compliance.
Impact of Anthropomorphic Shape and Skin Stratification on Absorbed Power Density in mmWaves Exposure Scenarios
This dosimetry study used FDTD simulations at 28 GHz to evaluate how skin stratification and anthropomorphic modeling affect absorbed power density (APD) estimates. APD was higher with stratified skin than with homogeneous skin for a wearable patch antenna (16%–30% higher), while plane-wave differences were smaller (<11%). The authors argue that simplified skin models may underestimate exposure in mmWave wearable scenarios.
13.56 MHz RFID Module - From Application to Process Modelling and Effects on Human Health
This paper presents an application and numerical process modelling of a 13.56 MHz RFID module, including how nearby tags/cards and their positioning affect antenna characteristics. It also considers RFID operation near human tissues and discusses potential health impacts from prolonged EMF exposure at 13.56 MHz. The authors emphasize the importance of evaluating long-term exposure risks and call for additional scientific attention.
A novel approach for assessments of radiofrequency electromagnetic fields exposure in buildings near telecommunication infrastructure
This paper proposes a new methodology to better assess indoor RF-EMF exposure in buildings near telecommunication base station antennas by refining measurement-point selection. Implemented in four multi-storey buildings in Natal, Brazil, indoor electric field peaks and averages were reported to be substantially higher than ground-level measurements. Although the highest indoor levels remained below ICNIRP recommended limits, the authors argue current regulatory evaluation methods may underestimate indoor exposure in certain building locations.
Effect of elevation on cumulative radiofrequency exposure from multiple communication towers
This exposure assessment measured RF power density across different floors of a high-rise university building using a spectrum analyser and log-periodic antenna. Power density decreased from the ground to the third floor but peaked on the fourth (top) floor. The 900 MHz band showed the highest reported power density (1.16E-03 W/m2), and the authors suggest higher-floor occupants may experience higher RF exposure from nearby communication towers.
Deduction of Extrapolation Factors in Realistic Scenarios for In-Situ Assessment of 5G Base Stations
This conference paper examines extrapolation factors used for in-situ EMF exposure assessment of 5G base stations in realistic indoor and outdoor scenarios. Using both frequency-selective and code-selective measurement approaches under varying traffic conditions, it reports substantial variability in extrapolated exposure estimates driven largely by antenna radiation patterns. Outdoor environments showed more stable extrapolation than indoor environments, highlighting challenges for reliable exposure assessment when antenna patterns and network configurations are not well characterized.
Assessment of RF EMF Exposure to Car Driver from Monopole Array Antennas in V2V Communications Considering Thermal Characteristics
This modeling study assessed RF-EMF exposure from a 5.9 GHz V2V monopole array antenna integrated into a car roof shark-fin antenna. Using COMSOL simulations with an adult male body model inside a vehicle, the authors estimated localized and whole-body SAR and associated core temperature rise over a 30 min averaging period. Reported SAR and temperature rise values were below ICNIRP occupational thermal-based restrictions, leading the authors to conclude the exposure does not pose a threat under the studied conditions.