Archive
198 postsMitigation of 3.5 GHz Electromagnetic Field-Induced BV2 Microglial Cytotoxicity by Polydeoxyribonucleotide
This in vitro study exposed BV2 mouse microglial cells to 3.5 GHz EMF for 2 hours and reports reduced cell growth and increased apoptosis alongside oxidative stress and signaling changes. The authors report that ROS generation and activation of JNK-1/2 and p38 MAPK were key events in the observed cytotoxicity. Polydeoxyribonucleotide (PDRN) reportedly reduced several EMF-associated cytotoxicity markers, suggesting a potential mitigating effect under the tested conditions.
Effects of Polarized Coherent Microwaves Modulated at Extremely Low Frequencies
This review-style text discusses polarized, coherent microwaves that are modulated and pulsed at extremely low frequencies (ELF) and suggests these characteristics may increase biological interactions. It emphasizes that intensity variability and ELF modulation are important for understanding EMF–biology interactions. It also states that such exposures have been linked to health risks in the scientific literature, framing the topic as relevant to EMF safety and public health risk mitigation.
A comprehensive mechanism of biological and health effects of anthropogenic extremely low frequency and wireless communication electromagnetic fields
This narrative review discusses biological mechanisms and reported health effects of anthropogenic extremely low frequency (ELF) and wireless communication (WC) electromagnetic fields. It highlights oxidative stress and DNA damage as key mechanistic endpoints and proposes an IFO-VGIC pathway linking EMF exposure to ROS overproduction and cellular dysfunction. The authors interpret the broader literature as indicating risks (e.g., cancer, infertility, EHS) even below current exposure limits and advocate precautionary policy measures, including stricter limits and a 5G moratorium.
Rapid Deployment of 5G Wireless Communication and Risk Assessment on Human Health: Quid Novi?
This review discusses the rapid deployment of 5G and the associated debate about potential human health impacts from EMF exposure, particularly at 3.5–26 GHz including millimeter waves. It emphasizes limited published studies in these exposure ranges and highlights EU-funded initiatives and research consortia aimed at closing knowledge gaps. The authors state that guidelines are generally considered adequate at present, but argue that uncertainties—especially regarding long-term exposure—support continued research and precautionary approaches.
5G-exposed human skin cells do not respond with altered gene expression and methylation profiles
This in vitro study exposed human skin cells (fibroblasts and keratinocytes) to 5G-band electromagnetic fields for 2 hours and 48 hours using a fully blinded design. Exposures were up to ten times permissible limits, with sham exposure as a negative control and UV exposure as a positive control. The study reports that observed gene expression and DNA methylation differences were minor and consistent with random variation, supporting no detectable EMF-related effect under the tested conditions.
Epidemiological criteria for causation applied to human health harms from RF-EMF exposure: Bradford Hill revisited
This paper is a commentary reviewing how Bradford Hill’s epidemiological criteria can be applied to multidisciplinary evidence on RF-EMF exposure and adverse health effects. It reports that systematic reviews and meta-analyses in this area often reach substantially different conclusions, and argues that key weaknesses in primary studies—especially exposure measurement error and insufficient time for long-latency tumors—help explain the divergence. The author suggests these limitations may cause underestimation of potential causation if the associations are truly causal, and calls for independent guidelines to improve future epidemiological research quality.
Exposure Perception and Symptom Reporting in Idiopathic Environmental Intolerance Attributed to Electromagnetic Fields Using a Co-Designed Provocation Test
This co-designed provocation study in IEI-EMF volunteers evaluated whether perceived exposure and symptom reporting tracked actual EMF exposure under double-blind conditions. The abstract reports no consistent alignment between perceived exposure certainty or symptoms and true exposure status at the group level, with limited individual exceptions. Symptom reporting was related to certainty of being exposed for about half of participants, which the authors interpret as supporting a nocebo-type mechanism and motivating refinement of provocation protocols.
Electrohypersensitivity: what is belief and what is known?
This article addresses electrohypersensitivity (EHS) in the context of public health and EMF-related health concerns. It focuses on distinguishing beliefs about EMF effects from what is currently supported by scientific evidence. The provided text notes ongoing debate and concern and calls for critical assessment of both beliefs and empirical findings.
What is the effect of alarmist media and radiofrequency electromagnetic field (RF-EMF) exposure on salivary cortisol and non-specific symptoms?
This randomized study tested whether viewing alarmist media and participating in an open-label RF-EMF provocation trial influenced non-specific symptoms and salivary cortisol. Participants who believed they were being exposed reported more symptoms than those who believed they were not exposed. The study did not find a replicated effect of alarmist media or open-label RF-EMF exposure on salivary cortisol, suggesting reported symptoms were more related to perception than cortisol-measured stress.
Exploring the impact of environmental factors on male reproductive health through epigenetics
This narrative review discusses how environmental factors may affect male reproductive health through epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulation. It reports that electromagnetic radiation, particularly from mobile phones and wireless devices, is linked in the reviewed literature to reduced sperm count and motility, increased oxidative stress, and chromatin damage. The authors conclude there is a substantive connection between EMF exposure and adverse male reproductive outcomes and suggest practical risk-reduction guidance.
Assessing RF EMF exposure in multiple microenvironments across ten European countries with a focus on 5G
This exposure assessment measured environmental and auto-induced RF-EMF across more than 800 microenvironments in ten European countries, with a focus on 5G-related bands. Non-user environmental exposure was reported to be below international guideline values and similar to prior European research, while induced traffic substantially increased measured exposure, especially in uplink scenarios. The study also reports systematic differences by setting (cities vs villages) and by national precautionary limit policies.
5G EMF Exposure at 3.6 GHz in Greece Using Data From Frequency-Selective Monitoring Sensors
This exposure-assessment study analyzed two years of continuous frequency-selective monitoring from 13 sensors in the five largest cities in Greece, focusing on the 3.6 GHz 5G band. It reports a gradual increase in 3.6 GHz environmental EMF levels over time and greater variability than legacy cellular bands, with 30-minute averaging reducing observed fluctuations. Despite the upward trend and variability, all measurements were reported to remain well below Greek and ICNIRP reference levels, and the authors emphasize the value of continuous monitoring as 5G deployment expands.
Deduction of Extrapolation Factors in Realistic Scenarios for In-Situ Assessment of 5G Base Stations
This conference paper examines extrapolation factors used for in-situ EMF exposure assessment of 5G base stations in realistic indoor and outdoor scenarios. Using both frequency-selective and code-selective measurement approaches under varying traffic conditions, it reports substantial variability in extrapolated exposure estimates driven largely by antenna radiation patterns. Outdoor environments showed more stable extrapolation than indoor environments, highlighting challenges for reliable exposure assessment when antenna patterns and network configurations are not well characterized.
An approach for annual analysis of EMF exposure in highly sensitive areas of kindergartens and schools
This paper proposes a time-averaging approach for analyzing long-term EMF exposure using time-series data from three sensors in a regulatory monitoring network. Sensors were installed at two kindergartens and one elementary school, and analyses reported daily/weekly patterns, differences between weekdays and weekends, and site-specific annual increases/decreases. The work emphasizes the value of continuous monitoring in sensitive areas, while not directly assessing health outcomes.
Assessment of RF EMF Exposure to Car Driver from Monopole Array Antennas in V2V Communications Considering Thermal Characteristics
This modeling study assessed RF-EMF exposure from a 5.9 GHz V2V monopole array antenna integrated into a car roof shark-fin antenna. Using COMSOL simulations with an adult male body model inside a vehicle, the authors estimated localized and whole-body SAR and associated core temperature rise over a 30 min averaging period. Reported SAR and temperature rise values were below ICNIRP occupational thermal-based restrictions, leading the authors to conclude the exposure does not pose a threat under the studied conditions.
Electromagnetic fields regulate iron metabolism: From mechanisms to applications
This review synthesizes evidence that electromagnetic field (EMF) exposure is associated in the literature with changes in systemic and cellular iron metabolism, with reported effects varying by EMF parameters, exposure duration, and biological context. It proposes mechanistic pathways involving iron-containing proteins/tissues, membrane and ion channel modulation, and reactive oxygen species (ROS). The authors frame iron-metabolism modulation as relevant to both therapeutic applications and safety evaluation, while emphasizing inconsistencies and the need for standardized exposure protocols.
Terahertz Radiation Affects the Dynamics of Neurons by Decreasing Membrane Area Ratio
This study reports that terahertz radiation decreased a neuronal membrane area ratio (cytosol relative to protruding membrane area) beginning on the first day of exposure and persisting during the exposure period. It further reports altered neuronal firing/discharge patterns and increased peak postsynaptic currents associated with the morphology change, supported by a kinetic model. The authors frame the findings as indicating significant effects of terahertz-frequency EMF on neural health and function and suggest potential neuromodulation applications.
Exploring the influence of Schumann resonance and electromagnetic fields on bioelectricity and human health
This review examines links between extremely low-frequency electromagnetic fields, especially the Schumann resonance at ~7.83 Hz, and biological regulation of bioelectricity. It describes proposed mechanisms involving calcium flux modulation and downstream effects on neural activity (including EEG) and circadian rhythms. The article presents both potential benefits from controlled ELF exposures (e.g., therapeutic applications) and potential harms from artificial EMFs disrupting key physiological processes, while emphasizing the need for further research.
Effect of short-term extremely low-frequency electromagnetic field on respiratory functions
This animal study tested whether short-term ELF-EMF exposure alters respiratory physiology in rats. Twenty Wistar albino rats were assigned to control or EMF exposure (50 Hz, 0.3 mT for 2 minutes) with respiratory parameters measured before, during, and after exposure. The study reports changes during exposure (lower respiratory rate and higher cycle duration, inspiration time, and tidal volume) but no differences after exposure, and it frames the findings as relevant to EMF safety and potential health risks.
Effects of radiofrequency electromagnetic field exposure on cancer in laboratory animal studies, a systematic review
This systematic review evaluated RF EMF exposure and cancer outcomes in experimental animals, including chronic cancer bioassays and tumor-promotion designs. Across 52 included studies, the authors report high certainty of evidence for increased malignant heart schwannomas and gliomas in male rats, and moderate certainty for increased risks of several other tumor types. Many other organ systems showed no or minimal evidence of carcinogenic effects, and the authors note challenges in translating animal findings to human risk assessment due to exposure and mechanistic uncertainties.
Sleep and Arousal Hubs and Ferromagnetic Ultrafine Particulate Matter and Nanoparticle Motion Under Electromagnetic Fields: Neurodegeneration, Sleep Disorders, Orexinergic Neurons, and Air Pollution in Young Urbanites
This review/overview argues that ultrafine particulate matter and industrial nanoparticles can reach the brain and accumulate in sleep and arousal regulatory regions, including orexinergic neuron hubs. It reports that ferromagnetic particles in these regions show motion responsive to low-intensity electromagnetic fields (30–50 μT) and describes links to sleep disturbances and neurodegenerative disease markers in young urban residents. The authors frame combined air pollution nanoparticle exposure and low-level EMF as a significant threat and call for monitoring and protective strategies.
Assessing EMF Exposure in Greek Urban and Suburban Areas During 5G Deployment: A Focus on 5G EMF Levels and Distance Correlation
This exposure assessment reports 400 ground-level electric field measurements in Greek urban and suburban areas during 5G deployment. It finds that 4G contributes most to overall measured EMF exposure, while 5G currently contributes less. The study reports an inverse relationship between 3.5 GHz EMF levels and distance from 5G base stations, with urban areas showing higher levels than suburban areas.
Impact of expectancy on fatigue by exposure to the fifth generation of mobile communication signals
This randomized sham-controlled study in 21 healthy participants tested whether routine-level 5G RF-EMF exposure affects fatigue and EEG power, while manipulating expectancy via correct, false, or no information about exposure order. The study reports no change in EEG power with real versus sham exposure. However, self-reported fatigue varied with the conveyed information about being exposed, suggesting an expectancy/psychological priming effect on symptom reporting.
Determining the relationship between mobile phone network signal strength and RF-EMF exposure: protocol and pilot study to derive conversion functions
This protocol and pilot study evaluated whether smartphone signal strength indicators can be converted into RF-EMF exposure estimates using derived formulas and regression models. The study reports a positive log-linear association between LTE RSSI and far-field (base station) exposure aggregated by location, while handset-related exposure at the ear and chest during data transmission showed negative log-linear trends with improving signal quality. The authors conclude the ETAIN 5G-Scientist app may support large-scale RF-EMF exposure assessment, but emphasize the need for more data to improve accuracy and address uncertainties in individual measurements.
Chicken or egg? Attribution hypothesis and nocebo hypothesis to explain somatization associated to perceived RF-EMF exposure
This longitudinal cohort study examined the temporal relationship between somatization and perceived RF-EMF exposure, comparing the attribution hypothesis with the nocebo hypothesis. Using AMIGO questionnaire data from 2011 and 2015, regression analyses suggested the attribution hypothesis more often explained symptom reporting linked to perceived base station RF-EMF exposure and perceived electricity exposure than the nocebo hypothesis. The authors state this contrasts with prior literature and note that a nocebo effect is not fully excluded.