Archive
77 postsFilters: tag: oxidative-stress Clear
Effects of Simultaneous In-Vitro Exposure to 5G-Modulated 3.5 GHz and GSM-Modulated 1.8 GHz Radio-Frequency Electromagnetic Fields on Neuronal Network Electrical Activity and Cellular Stress in Skin Fibroblast Cells
This in-vitro study exposed primary cortical neurons and human immortalized skin fibroblasts to simultaneous 5G-modulated 3.5 GHz and GSM-modulated 1.8 GHz RF-EMF at SARs of 1 or 4 W/kg. It reports no significant changes in neuronal network firing/bursting activity and no alteration of mitochondrial ROS in fibroblasts. Stress-related signaling readouts showed only minor, threshold-level variations without a consistent pattern, and no HSF1 activation was observed. Overall, the authors conclude there is no strong evidence of biological effects under these exposure conditions.
Synergistic Effects of 2600 MHz Radiofrequency Exposure and Indomethacin on Oxidative Stress and Gastric Mucosal Injury in Rats
This rat study tested whether 2600 MHz radiofrequency field exposure interacts with indomethacin to affect gastric tissue. Both exposures alone were reported to increase oxidative stress and reduce antioxidant markers in the stomach. Co-exposure was reported to intensify oxidative stress, apoptosis, and histological gastric mucosal injury compared with either factor alone, consistent with a synergistic detrimental effect in this model.
Review of the evidence on the influence of Wi-Fi 2.4 GHz radiation on oxidative stress and its possible relationship with Alzheimer's disease
The review states there is no scientific consensus on whether Wi‑Fi (2.4/5 GHz) contributes to Alzheimer's disease through oxidative stress, and that existing results are mixed and inconclusive. It discusses an indirect analysis linking oxidative-stress-responsive genes after 2.4 GHz exposure with genes associated with Alzheimer's disease. The authors suggest chronic exposure could affect regulation of neurodegeneration-related genes (e.g., GSK3B, APOE), while emphasizing that a direct relationship has not been demonstrated and more research is needed.
A Systematic Review of the Impact of Electromagnetic Waves on Living Beings
This PRISMA-adherent systematic review searched PubMed, Scopus, and the Cochrane Library for studies (2017–2024) on physiological or behavioral responses to EMF exposure, emphasizing studies reporting harmful or concerning effects. Across 24 included studies (human non-randomized, in vitro, and animal), the review reports negative biological effects including oxidative stress, inflammation, genotoxicity, cardiovascular and fertility-related outcomes, neuronal activity changes, and plant photosynthesis impacts. The authors report that most studies had moderate to high risk of bias and therefore the overall certainty of evidence was lower, and they highlight major gaps in long-term human evidence and exposure standardization.
Systematic reviews and meta-analyses for the WHO assessment of health effects of exposure to radiofrequency electromagnetic fields, an introduction
This editorial introduces a special issue supporting the WHO assessment of health effects from RF-EMF exposure, based on nine protocols and twelve systematic reviews developed over four years by more than 80 experts. It summarizes that human evidence for major cancers was moderate-certainty for no or only small effects, with lower certainty for some cancer sites, while animal evidence reported higher-certainty effects for several cancer types and adverse effects on male fertility. For cognition, symptoms, and oxidative stress, certainty was generally lower and findings more variable, and the editors note ongoing methodological challenges and the possibility of unidentified mechanisms.
Oxidative stress and testicular damage induced by chronic exposure to 35.5 GHz millimeter wave radiation in male Wistar rats
This randomized controlled animal study examined chronic 35.5 GHz millimeter wave exposure in male Wistar rats (2 hours/day for 60 days) compared with control and sham groups. The exposed group showed reduced sperm count and viability along with testicular histopathological changes. Oxidative stress markers shifted toward increased lipid peroxidation and reduced antioxidant defenses, and comet assay results indicated increased DNA damage.
From particulates to pathways: environmental exposures and their impact on Alzheimer's disease
This review discusses how environmental exposures across air, water, and soil pollutants may influence Alzheimer's disease (AD) onset and progression. It highlights EMFs as a potential aggravating factor, reporting associations with oxidative stress, inflammation, calcium dysregulation, and accelerated amyloid-beta plaque accumulation in animal and human studies. The authors emphasize risk reduction strategies and call for further research and public health interventions.
Impact of in vitro exposure to 5G-modulated 3.5 GHz fields on oxidative stress and DNA repair in skin cells
This in vitro study tested whether 5G-modulated 3.5 GHz RF-EMF exposure affects oxidative stress and DNA repair in human skin cells. Under acute exposure conditions (up to 24–48h) at SARs up to 4 W/kg, the authors report no significant changes in ROS markers, no adaptive response to oxidative challenge, and no impairment of UV-B–related CPD repair via nucleotide excision repair. The authors note that acute in vitro results may not directly generalize to chronic or real-life exposures.
A scoping review and evidence map of radiofrequency field exposure and genotoxicity: assessing in vivo, in vitro, and epidemiological data
This scoping review and evidence map (PRISMA-ScR) summarizes over 500 studies on RF-EMF exposure and genotoxicity across in vitro, in vivo, and epidemiological research. The authors report a higher proportion of significant DNA damage findings in in vivo and epidemiological studies than in vitro studies, with DNA base damage commonly reported under real-world/pulsed/GSM talk-mode conditions and longer exposures. They conclude that DNA damage has been observed at exposure levels below ICNIRP limits and recommend precautionary measures and updates to guidelines to address potential non-thermal effects.
A Prolonged exposure to Wi-Fi Radiation Induces Neurobehavioral Changes and Oxidative Stress in Adult Zebrafish
This animal study exposed adult zebrafish to 2.45 GHz Wi‑Fi radiation for 4 hours daily over 30 consecutive days. The authors report neurobehavioral impairments with altered locomotion, alongside decreased acetylcholinesterase and increased brain oxidative stress. They conclude these findings indicate a safety risk and call for further mechanistic and public health research.
Investigation of the Effects of 2.45 GHz Near-Field EMF on Yeast
This in vitro study exposed yeast suspensions to 2.45 GHz near-field microwave radiation at 2 cm and 4 cm for 20 or 60 minutes. It reports oxidative-stress-related changes (reduced antioxidant activity with increased membrane permeability) after 20 minutes at 2 cm, an effect not reproduced by conventional heating. The study also reports a trend toward increased DNA damage under both exposure conditions and mild membrane permeability changes after 60 minutes at 4 cm.
Exposure to radiofrequency electromagnetic fields and IARC carcinogen assessment: Risk of Bias preliminary literature assessment for 10 key characteristics of human carcinogens
This review examined experimental literature on whether RF-EMF exposures within ICNIRP (2020) limits affect IARC key characteristics of human carcinogens. It identified 159 articles and found that 38% of in vitro/in vivo measurements reported statistically significant effects, but higher study quality was associated with fewer reported effects and there was no consistent exposure-response pattern. The authors state that study diversity and generally poor quality prevent high-confidence conclusions for most key characteristics, while recommending replication of the few higher-quality positive findings under stringent standards.
Protective effects of quercetin against 3.5 GHz RF radiation-induced thyroid dysfunction and oxidative stress in rats
This rat study examined repeated 3.5 GHz RF exposure (2 hours/day, 5 days/week for 30 days) and thyroid-related outcomes, with and without quercetin. The abstract reports altered thyroid hormones (lower T3/T4, higher TSH) and increased oxidative stress in thyroid tissue after RF exposure. Quercetin appeared partially protective, though effects were not uniformly statistically significant, and SAR simulations indicated relatively higher absorption in the thyroid region.
The effects of short-term and long-term 2100 MHz radiofrequency radiation on adult rat auditory brainstem response
This animal study examined 2100 MHz radiofrequency radiation exposure effects on auditory brainstem responses and brain oxidative/ultrastructural markers in adult rats. The 1-week exposure group showed prolonged ABR latencies and biochemical/structural changes consistent with oxidative stress and cellular injury. The authors report no harmful effects in the 10-week exposure condition with rest days under the studied protocol.
Mitigation of 3.5 GHz Electromagnetic Field-Induced BV2 Microglial Cytotoxicity by Polydeoxyribonucleotide
This in vitro study exposed BV2 mouse microglial cells to 3.5 GHz EMF for 2 hours and reports reduced cell growth and increased apoptosis alongside oxidative stress and signaling changes. The authors report that ROS generation and activation of JNK-1/2 and p38 MAPK were key events in the observed cytotoxicity. Polydeoxyribonucleotide (PDRN) reportedly reduced several EMF-associated cytotoxicity markers, suggesting a potential mitigating effect under the tested conditions.
A comprehensive mechanism of biological and health effects of anthropogenic extremely low frequency and wireless communication electromagnetic fields
This narrative review discusses biological mechanisms and reported health effects of anthropogenic extremely low frequency (ELF) and wireless communication (WC) electromagnetic fields. It highlights oxidative stress and DNA damage as key mechanistic endpoints and proposes an IFO-VGIC pathway linking EMF exposure to ROS overproduction and cellular dysfunction. The authors interpret the broader literature as indicating risks (e.g., cancer, infertility, EHS) even below current exposure limits and advocate precautionary policy measures, including stricter limits and a 5G moratorium.
Skin Fibroblasts from Individuals Self-Diagnosed as Electrosensitive Reveal Two Distinct Subsets with Delayed Nucleoshuttling of the ATM Protein in Common
This study reports on 26 adults self-diagnosed with electromagnetic hypersensitivity (EHS) who provided skin biopsies to generate primary fibroblast lines. The authors describe two EHS subsets based on questionnaire and DNA damage-related measures, and report delayed ATM nucleoshuttling after X-ray exposure in all samples, interpreted as impaired DNA repair signaling. They propose a molecular model linking EHS to ATM pathway dysfunction and suggest this could relate to increased cancer risk or accelerated aging.
Exploring the impact of environmental factors on male reproductive health through epigenetics
This narrative review discusses how environmental factors may affect male reproductive health through epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA regulation. It reports that electromagnetic radiation, particularly from mobile phones and wireless devices, is linked in the reviewed literature to reduced sperm count and motility, increased oxidative stress, and chromatin damage. The authors conclude there is a substantive connection between EMF exposure and adverse male reproductive outcomes and suggest practical risk-reduction guidance.
Potential Impacts of Radiofrequency Electromagnetic Fields on the Central Nervous System, Brain Neurotransmitter Dynamics and Reproductive System
This review discusses potential impacts of radiofrequency electromagnetic fields from technologies such as Wi‑Fi and mobile phones on the central nervous system, neurotransmitter dynamics, and reproductive health. It describes proposed mechanisms including oxidative stress, thermal effects, altered neurotransmitter activity, ion channel changes, and neuronal apoptosis, while acknowledging conflicting evidence. The authors note that Wi‑Fi RF exposure has not been confirmed to exceed safety guidelines but argue that updated standards and long-term studies are needed, particularly for children/adolescents and in the context of expanding technologies such as 5G.
Melatonin ameliorates RF-EMR-induced reproductive damage by inhibiting ferroptosis through Nrf2 pathway activation
This animal study reports that prolonged RF-EMR exposure (2.45 GHz for 8 weeks) increased oxidative stress and ferroptosis in mouse testicular tissue and was associated with reduced sperm quality. Melatonin administration reportedly mitigated oxidative injury and inhibited ferroptosis. The abstract attributes the protective effect to Nrf2 pathway activation via MT1/MT2 receptors.
Effects of 700MHz radiofrequency radiation (5G lower band) on the reproductive parameters of female Wistar rats
This animal study examined short- and long-term 700 MHz (lower-band 5G) radiofrequency exposure in female Wistar rats, comparing control, sham, and exposed groups. It reports no DNA damage and no change in estrous cycle length, but increased ovarian oxidative stress markers in exposed animals. Long-term exposure was associated with ovarian histopathological alterations, while estradiol and progesterone stayed within normal ranges and testosterone increased slightly but significantly.
The effects of radiofrequency radiation on male reproductive health and potential mechanisms (Review)
This narrative review summarizes human and animal research on radiofrequency (RF) radiation exposure (e.g., mobile phones, Wi‑Fi, occupational sources) and male reproductive outcomes. It reports that the literature links RF exposure with reduced sperm quality and increased DNA damage, often alongside oxidative stress and other proposed biological changes. Although inconsistencies are acknowledged, the authors conclude the overall evidence suggests harmful associations and call for standardized, long-term studies and reconsideration of guidelines.
Role of radio-frequency electromagnetic waves in causing oxidative stress
This animal study exposed fertilized chick eggs to a nearby 1800 MHz mobile phone that was called repeatedly (50 minutes/day) and assessed embryos at days 10 and 15. The exposed group reportedly showed mitochondrial abnormalities in liver, brain, and heart tissues on electron microscopy, along with increased HSP70 in cardiomyocytes and hepatocytes. The authors conclude that radio-frequency electromagnetic waves can induce oxidative stress and mitochondrial damage in developing embryos.
Electromagnetic Fields Act Similarly in Plants as in Animals: Probable Activation of Calcium Channels via Their Voltage Sensor
This narrative review proposes that low-intensity microwave/lower-frequency EMFs activate plasma membrane calcium channels in animals, increasing intracellular calcium and triggering downstream signaling including oxidative stress pathways. It further suggests that EMF actions in terrestrial multicellular plants are probably similar, with plant two-pore channels proposed as plausible mediators due to a comparable voltage sensor. The abstract describes briefly reviewed plant studies as consistent with this mechanism, but does not provide detailed exposure parameters or quantitative results.
Microwave frequency electromagnetic fields (EMFs) produce widespread neuropsychiatric effects including depression
This 2016 narrative review proposes that non-thermal microwave/lower-frequency EMFs act primarily through activation of voltage-gated calcium channels (VGCCs), with calcium channel blockers reported to block EMF effects. It summarizes animal, occupational, and epidemiological literature and reports that exposures from base stations, heavy mobile phone use, and wireless smart meters are associated with neuropsychiatric symptoms, sometimes with doseresponse patterns. The author concludes that multiple lines of evidence collectively support that non-thermal microwave EMF exposures can produce diverse neuropsychiatric effects including depression.