Archive
94 postsAssessment of spatial-average absorbed power density and peak temperature rise in skin model under localized electromagnetic exposure
This numerical dosimetry study modeled localized RF exposure (3–30 GHz) in multi-layer human skin constructs including skin, fat, and muscle, with an added synthetic blood vessel model. Vascular modeling had negligible impact on peak spatial-averaged absorbed power density and a modest impact on peak temperature rise (about 8% at 3 GHz, <3% above 6 GHz). The authors conclude that including vasculature can refine predictions of localized thermal distributions for dosimetry accuracy.
Traceable Assessment of the Absorbed Power Density of Body Mounted Devices at Frequencies Above 10 GHz
This paper presents a traceable experimental dosimetry method to measure absorbed power density (APD) from body-mounted wireless devices at frequencies above 10 GHz. It combines a miniaturized broadband probe, a composite skin-equivalent phantom, and reconstruction/calibration procedures, with validation using reference antennas. The approach is reported as validated for 24–30 GHz and extendable to 10–45 GHz, supporting regulatory-type testing aligned with international safety standards.
Assessing exposure from different vehicular antennas in military applications: a computational study
This computational study modeled electromagnetic exposure for military personnel near vehicular communication antennas across HF, VHF, and UHF scenarios. All simulated configurations reportedly met ICNIRP Basic Restrictions, though some exceeded ICNIRP Reference Levels in certain positioning and frequency combinations. The authors conclude that safety is generally maintained across the modeled conditions and that results can inform operational guidance and safety regulations.
In situ electric field dosimetry analysis for powerline frequency peripheral nerve magnetic stimulation
This study used computational dosimetry to analyze induced electric fields in a realistic human body model for a 60 Hz magnetic-field exposure system targeting the leg. Simulations indicated high EF intensities in several leg nerves and modeled conditions consistent with possible peripheral nerve stimulation. The MRG model produced lower stimulation thresholds than the SENN model, and nerve orientation was reported as a key determinant of stimulation risk.
Instruments and Measurement Techniques to Assess Extremely Low-Frequency Electromagnetic Fields
This paper presents a quantitative framework for selecting extremely low-frequency electromagnetic field (ELF-EMF) measurement instruments. It uses a weighted scoring matrix across six criteria and a logic-based flowchart to guide instrument choice based on operational needs. The framework is demonstrated in an occupational case study and is positioned as supporting transparent, adaptable device selection for occupational safety and public health.
Weak anthropogenic electric fields affect honeybee foraging
This animal ecology study reports that weak anthropogenic-like airborne electric fields can reduce honeybee floral landing rates. It reports deterrent effects for AC and positive DC fields, with no statistically significant effect for negative DC fields. The authors also report that electric fields measured near high-voltage power lines can match the levels that affected bees and extend tens of meters at foraging-relevant heights.
Effect of Static Electromagnetic Field on Growth Parameters, Survival Rate, Sex Distribution, Ratio, and Liver and Gonadal Health of Zebrafish
This animal study exposed zebrafish embryos to static electromagnetic fields for 63 days post-hatching across aquariums positioned 30–99 cm from the source, with an EMF-free control. The abstract reports strong shifts in sex distribution (including 100% female at the closest distance), markedly reduced survival in exposed groups, and histological liver and gonadal damage. The authors frame the findings as evidence of potential ecological risk via disrupted sex ratios and compromised health.
Exposure of human lymphocytes to sweeping-frequency extremely low frequency magnetic field
This in vitro study exposed human umbilical cord blood lymphocytes to a sinusoidal sweeping-frequency ELF magnetic field (3–26 Hz) for 48 hours at amplitudes from 6 to 24 μT. It reports no statistically significant effects on DNA damage/repair foci or apoptosis measures overall. A non-significant trend at 8 μT showed lower γH2AX foci (p = .064) and data suggesting fewer viable cells at the same intensity, which the authors discuss as potentially protective against DNA double-strand breaks.
Building the gulf of opinions on the health and biological effects of electromagnetic radiation
This narrative article examines how opposing views formed regarding health and biological effects of electromagnetic radiation, focusing on ELF and RF exposures. It highlights historical controversies (e.g., childhood leukemia and ELF fields) and disputes over thermal versus non-thermal effects and reliance on SAR. The author argues that social and institutional factors, including industry influence, shaped interpretation and public discourse around EMF safety.
Impact of Radiofrequency Electromagnetic Fields on Cardiac Activity at Rest: A Systematic Review of Healthy Human Studies
This systematic review evaluated evidence on RF-EMF exposure and cardiac activity (heart rate and heart rate variability) in healthy humans at rest. Across 28 studies spanning 100 to 110,000 MHz and exposures from minutes to a week, most studies reported no significant effects on resting heart rate, and HRV findings were largely null under calm conditions. Some position-dependent HRV changes were reported, and the authors note possible effects during physiological challenges, but conclude evidence is insufficient for firm conclusions beyond resting healthy populations.
Men with genetic predisposition face greater fertility challenges when exposed to electromagnetic radiation
This case-control genetic association study in men from West Bengal, India examined variants in meiotic regulator genes (SPO11, RNF212, SYCP3) alongside reported exposure to electronic (electromagnetic) radiation as risk factors for azoospermia. It reports that genetic variants were associated with increased azoospermia risk, and that risk was higher among men aged 30+ who were also exposed to electromagnetic radiation. The authors conclude that EMF exposure may exacerbate fertility impairment in genetically predisposed men.
Exploring research trends in health effects of 5G antennas: a bibliometric analysis
This paper presents a bibliometric analysis of Web of Science literature (2012–2025) on potential health effects related to 5G antennas. It reports a marked increase in publications in the past five years, with substantial attention to dosimetric metrics (SAR and power density) and their regulatory limits. The authors forecast continued growth in the field and emphasize the need for ongoing research and interdisciplinary collaboration focused on potential health risks and compliance.
Pilot questionnaire survey shows the lack of diagnostic criteria for electromagnetic hypersensitivity: a viewpoint
This viewpoint reports results from a pilot questionnaire survey of 142 self-declared EHS/IEI-EMF individuals and argues that current evidence and tools do not allow a definitive medical diagnosis of sensitivity to low-level wireless radiation. It notes that many reported diagnoses appear anecdotal and that tests used lack scientific proof for detecting such sensitivity. The article also considers individual sensitivity plausible and calls for controlled provocation and biochemical studies to develop diagnostic biomarkers.
Temporal change of outdoor RF-EMF levels in four European countries: a microenvironmental measurement study
This microenvironmental measurement study assessed temporal trends in outdoor RF-EMF exposure between 2016 and 2023 in the Netherlands, Switzerland, Belgium, and Spain using harmonized walking-route measurements with exposimeters. The authors report no significant change in mobile base station (downlink) exposure between 2016 and 2023 and no consistent trend across microenvironments or countries. Reported median downlink exposure values ranged from 0.11 mW/m² (Switzerland, 2023) to 0.62 mW/m² (Netherlands, 2018).
Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies
This study uses anatomically detailed computational models of a five-year-old girl, a pregnant woman in the third trimester, and a fetus to simulate mobile phone RF exposure inside an elevator cabin. Simulations at 1000 MHz and 1800 MHz across 48 configurations evaluated SAR10g, whole-body SAR, and maximum temperature. The abstract reports that configuration (positioning and phone orientation) can substantially change absorption and temperature metrics and calls for broader scenario testing to inform safety guidance for vulnerable populations.
Comparison Between Broadband and Personal Exposimeter Measurements for EMF Exposure Map Development Using Evolutionary Programming
This exposure-assessment study compares RF-EMF exposure maps produced using a broadband meter versus a personal exposimeter and aims to correct personal exposimeter readings to match broadband-based maps. The authors report that LOS/NLOS-specific correction factors reduce discrepancies, particularly improving LOS measurements affected by body shielding. A genetic algorithm is used to optimize correction factors and support scalable urban exposure mapping, with the authors noting that additional validation in other environments is needed.
Machine Learning Approach for Ground-Level Estimation of Electromagnetic Radiation in the Near Field of 5G Base Stations
This paper presents a machine-learning method to estimate ground-level electromagnetic radiation (electric field strength) in the near field of 5G base stations, using multiple technical and environmental input parameters. The authors report experimental performance with a mean absolute percentage error of about 5.89% and suggest the approach can reduce costs compared with on-site measurements. The work is positioned as supporting exposure management and base-station placement, while noting the need for careful EMF management due to potential health-risk links.
Cluster Analysis of RF-EMF Exposure to Detect Time Patterns in Urban Environment: A Model-Based Approach
This paper applies a model-based clustering approach (Log-Normal Mixture Model) to continuous RF-EMF monitoring data from the Serbian EMF RATEL network in Novi Sad to characterize temporal exposure patterns. The analysis reports separation of night versus day exposure values and identification of daytime periods where exposure persists longer. The work is positioned as supporting improved understanding of when and where elevated exposures occur in urban environments.
Impact of Anthropomorphic Shape and Skin Stratification on Absorbed Power Density in mmWaves Exposure Scenarios
This dosimetry study used FDTD simulations at 28 GHz to evaluate how skin stratification and anthropomorphic modeling affect absorbed power density (APD) estimates. APD was higher with stratified skin than with homogeneous skin for a wearable patch antenna (16%–30% higher), while plane-wave differences were smaller (<11%). The authors argue that simplified skin models may underestimate exposure in mmWave wearable scenarios.
Weak Radiofrequency Field Effects on Biological Systems Mediated through the Radical Pair Mechanism
This 2025 review examines claims of biological effects from weak, nonthermal RF magnetic fields and evaluates whether such effects could be mediated by the radical pair mechanism (RPM). It reports that aligning RPM theory with low-level experimental observations remains difficult and that many experimental findings are limited by reproducibility, statistical robustness, and dosimetry issues. The authors conclude a tangible but incompletely understood link may exist and emphasize the need for more rigorous, standardized, interdisciplinary work.
Effect of the radiation emitted from a cell phone on T lymphocytes in mice
This mouse study examined whether cell phone radiation affects T lymphocytes over 2–8 weeks of exposure. CD4 and CD8 subset percentages were similar across groups, but after more than six weeks, exposed groups showed increased T-cell apoptosis and reduced transformation rates compared with shams. The study also reports decreased IL-10 and increased IL-12 in exposed groups, suggesting time-dependent immunological changes under the tested conditions.
Low frequency magnetic field exposure and neurodegenerative disease: systematic review of animal studies
This systematic review synthesizes animal studies on low frequency magnetic field exposure in relation to neurodegenerative diseases. It reports no support for a causal induction of Alzheimer’s-type neuropathology in naive animals, while noting that evidence is too limited to draw strong conclusions for motor neuron disease, multiple sclerosis, and Parkinson’s disease regarding induced neuropathology. In models with pre-existing neurodegenerative disease, the review describes possible therapeutic effects on behavioral and neuroanatomical outcomes for dementia-related conditions, and no apparent effect on motor neuron disease progression.
Perspectives on terahertz honeybee sensing
This paper describes measurements and simulations to support terahertz (THz) sensing of European honey bees for environmental monitoring. It reports dielectric characterization of bee body parts across 1–500 GHz, scattering-based validation of 3D-printed bee mockups, and THz imaging demonstrating detailed anatomical visualization. The work includes dosimetric simulations at 300 GHz to evaluate feasibility of non-invasive, continuous monitoring and notes potential relevance to assessing high-frequency EMF impacts on insect health and habitat safety.
13.56 MHz RFID Module - From Application to Process Modelling and Effects on Human Health
This paper presents an application and numerical process modelling of a 13.56 MHz RFID module, including how nearby tags/cards and their positioning affect antenna characteristics. It also considers RFID operation near human tissues and discusses potential health impacts from prolonged EMF exposure at 13.56 MHz. The authors emphasize the importance of evaluating long-term exposure risks and call for additional scientific attention.
Exposure to radiofrequency electromagnetic fields and IARC carcinogen assessment: Risk of Bias preliminary literature assessment for 10 key characteristics of human carcinogens
This review examined experimental literature on whether RF-EMF exposures within ICNIRP (2020) limits affect IARC key characteristics of human carcinogens. It identified 159 articles and found that 38% of in vitro/in vivo measurements reported statistically significant effects, but higher study quality was associated with fewer reported effects and there was no consistent exposure-response pattern. The authors state that study diversity and generally poor quality prevent high-confidence conclusions for most key characteristics, while recommending replication of the few higher-quality positive findings under stringent standards.