Archive
32 postsFilters: tag: radical-pair-mechanism Clear
Effect of Electromagnetic Field on Oral Tissues: A Narrative Review
This narrative review explores potential links between EMF exposure, metallic or mixed-metal dental restorations, and reported systemic and neurological symptoms despite normal diagnostic findings. It discusses hypothesized quantum-biological mechanisms (including spin dynamics and radical-pair mechanisms) that could mediate interactions between EMFs and dental metals. The authors conclude that the complexity of these interactions warrants more rigorous research and emphasize that a possible health-risk link should not be ignored.
Magnetic effects in biology: Crucial role of quantum coherence in the radical pair mechanism
This theoretical biophysics study models the radical pair mechanism as an open quantum system to derive an explicit dependence of magnetic-field effects on the spin coherence relaxation time (τ) and chemical kinetics (k). It reports a condition under which RPM effects become significant and estimates τ in cryptochrome-like proteins to be on the order of units to tens of nanoseconds. The paper also reports that nanoTesla-level radio-frequency fields have minor influence and are unlikely to disrupt RPM patterns under the modeled decoherence.
Weak Radiofrequency Field Effects on Biological Systems Mediated through the Radical Pair Mechanism
This 2025 review examines claims of biological effects from weak, nonthermal RF magnetic fields and evaluates whether such effects could be mediated by the radical pair mechanism (RPM). It reports that aligning RPM theory with low-level experimental observations remains difficult and that many experimental findings are limited by reproducibility, statistical robustness, and dosimetry issues. The authors conclude a tangible but incompletely understood link may exist and emphasize the need for more rigorous, standardized, interdisciplinary work.
Exploring the influence of Schumann resonance and electromagnetic fields on bioelectricity and human health
This review examines links between extremely low-frequency electromagnetic fields, especially the Schumann resonance at ~7.83 Hz, and biological regulation of bioelectricity. It describes proposed mechanisms involving calcium flux modulation and downstream effects on neural activity (including EEG) and circadian rhythms. The article presents both potential benefits from controlled ELF exposures (e.g., therapeutic applications) and potential harms from artificial EMFs disrupting key physiological processes, while emphasizing the need for further research.
Magnetoreception and the ruling hypothesis
This article is a commentary on how emotions and community dynamics can bias scientific reasoning when a favored hypothesis becomes a "ruling hypothesis." Using animal magnetoreception as an example, it argues that radical-pair/cryptochrome-centered frameworks may sometimes be treated as dominant, potentially leading to selective interpretation of evidence. The authors call for separating individual intent from community-wide bias and offer recommendations to mitigate these risks.
Enhancement Effect of Static Magnetic Field on Bactericidal Activity
This in vitro study reports that a static magnetic field (SMF) combined with paramagnetic calcium-polypyrrole nanoparticles (Ca-PPy) markedly increases bactericidal activity against E. coli and S. aureus. The authors attribute the enhanced killing to increased reactive oxygen species generation and associated membrane disruption, with computational analysis suggesting altered radical-pair transitions under magnetic fields. The abstract frames SMF as potentially biocompatible and useful for bactericidal applications, while also noting broader biological impacts of electromagnetic fields.
Magneto-oncology: a radical pair primer
This mini-review discusses the radical pair mechanism as a plausible biophysical route by which external magnetic fields could influence biochemical processes in living systems. It is intended as a primer for magneto-oncology researchers to assess whether observed magnetic-field-related biomedical effects may be explained by radical pair biochemistry. The article also notes the value of this framework for refining therapeutic protocols and for identifying potential experimental artifacts in oncology-related magnetic field research.