Archive

73 posts

RF‑EMF, mitochondria, and Ion Timing Fidelity — why the 2018 oxidative‑stress review strengthens the S4‑to‑inflammation chain

Independent Voices RF Safe Nov 4, 2025

An RF Safe post argues that a 2018 review on EMF-related oxidative stress supports a mechanistic chain from radiofrequency (RF-EMF) exposure to mitochondrial reactive oxygen species (ROS) increases and downstream inflammation, emphasizing non-thermal exposures. It highlights the review’s focus on mitochondrial electron transport chain complexes I and III and discusses calcium signaling disruptions, then connects these to the site’s “Ion Timing Fidelity” model involving voltage-gated channel timing (S4 segment). The post also cites in-vitro human sperm research and other reviews as consistent with mitochondrial oxidative stress effects, while noting gaps in standardized human studies.

What non‑native EMFs really do — Ion Timing Fidelity under RF exposure, from S4 voltage sensing to mitochondrial ROS and immune dysregulation

Independent Voices RF Safe Nov 4, 2025

This RF Safe article argues that “non-native” radiofrequency (RF) exposures can deterministically disrupt voltage-gated ion channel timing (via the S4 voltage sensor), leading downstream to altered calcium signaling, mitochondrial reactive oxygen species (ROS), and immune dysregulation without tissue heating. It presents a proposed mechanistic chain linking RF exposure to oxidative stress, inflammation, and autoimmune-like states, and cites assorted animal studies and reviews as supportive. The piece is framed as a coherent explanatory model rather than a single new study, and specific cited findings are not fully verifiable from the excerpt alone.

Radio Frequency Exposure in Military Contexts: A Narrative Review of Thermal Effects and Safety Considerations

Research RF Safe Research Library Jan 1, 2025

This narrative review focuses on RF exposure in military contexts, emphasizing thermal effects as the established mechanism of harm and discussing safety limits set by bodies such as ICNIRP and IEEE. It reports that whole-body SAR limits (≤4 W/kg) generally prevent dangerous core temperature rises, but localized heating risks may persist for tissues like skin and eyes, especially when thermoregulation is impaired. The review highlights CEM43 as a potentially useful thermal-dose metric but notes complexity for transient exposures and calls for improved models and methods across relevant frequency bands.

Intercomparisons of computed epithelial/absorbed power density & temperature rise in anatomical human face models under localized exposures at 10 & 30 GHz

Research RF Safe Research Library Jan 1, 2025

This dosimetry intercomparison evaluated epithelial/absorbed power density and temperature rise in two high-resolution anatomical human face models under localized antenna exposures at 10 and 30 GHz. The study reports a statistical correlation between spatially averaged absorbed power density and temperature rise when appropriate averaging is applied. Antenna type/configuration was identified as the dominant contributor to variability, exceeding differences from averaging methods or anatomical models.

Model Variability in Assessment of Human Exposure to Radiofrequency Fields

Research RF Safe Research Library Jan 1, 2025

This review examines how variability in computational dosimetry models affects assessment of human RF exposure from MHz to terahertz frequencies, focusing on SAR, absorbed power density, and temperature rise. It reports that anatomical scaling and model choices can drive meaningful differences in predicted SAR (including higher values in children/smaller models), while temperature-rise predictions are especially sensitive to thermophysiological parameters and vascular modeling. The authors indicate that computed variability remains within ICNIRP/IEEE safety margins but argue that uncertainties warrant ongoing research and refinement as new technologies (e.g., 6G) emerge.

Modeling the interplay between myelin architecture and local electromagnetic fields

Research RF Safe Research Library Jan 1, 2025

This engineering/modeling study developed a 3D myelin microstructure model using finite element analysis and high-resolution imaging to simulate local electromagnetic field distributions. It reports that myelin architecture substantially shapes the distribution of electromagnetic fields across neural tissues. The authors suggest these field variations could potentially serve as non-invasive indicators of myelin integrity and may support tracking neurodegenerative disease progression.

Electrical oscillations in microtubules

Research RF Safe Research Library Jan 1, 2025

This study introduces a multi-scale electrokinetic model to characterize electrical impulses and ionic current propagation along microtubules, incorporating atomistic protein details and biological environments. It emphasizes nanopore-mediated coupling between microtubule surfaces as a key mechanism enabling luminal currents, energy transfer, amplification, and oscillatory dynamics. The authors report pharmacological inhibition experiments (Taxol and Gd3+) supporting the interpretation that nanopores function as active nanogates contributing to transistor-like behavior.

Electromagnetic fields and oxidative stress: The link to the development of cancer, neurological diseases, and behavioral disorders

Research RF Safe Research Library Jan 1, 2025

This review discusses epidemiological and mechanistic reports linking EMF exposure with oxidative stress and disease risk, and introduces an Electromagnetic Pathogenesis (EMP) conceptual model. The model proposes that non-ionizing EMFs increase mitochondrial electron leakage via electron tunneling, raising free radical production and oxidative stress. The authors argue oxidative stress is a primary mechanism connecting EMF exposure to cancer, cardiovascular, neurodevelopmental/neurodegenerative diseases, and behavioral/reproductive effects, and suggest reducing exposure may lower risk.

Synergistic Effects of 2600 MHz Radiofrequency Exposure and Indomethacin on Oxidative Stress and Gastric Mucosal Injury in Rats

Research RF Safe Research Library Jan 1, 2025

This rat study tested whether 2600 MHz radiofrequency field exposure interacts with indomethacin to affect gastric tissue. Both exposures alone were reported to increase oxidative stress and reduce antioxidant markers in the stomach. Co-exposure was reported to intensify oxidative stress, apoptosis, and histological gastric mucosal injury compared with either factor alone, consistent with a synergistic detrimental effect in this model.

Electromagnetic Field Stimulation Effects on Intrinsically Disordered Proteins and Their Role in Aging and Neurodegeneration

Research RF Safe Research Library Jan 1, 2025

This review discusses preclinical studies suggesting non-ionizing EMF exposures can produce beneficial biological effects, while noting ongoing controversy about mechanisms. It reports evidence of EMF-associated conformational changes in intrinsically disordered proteins relevant to neurodegeneration and describes RF exposure conditions that activate proteostasis and autophagy in cell and animal models. The authors propose a quantum-biophysical framework involving the water-protein interface and suggest potential human applications within regulatory safety thresholds.

Thermal and SAR-Based Limits for Human Skin Exposed to Terahertz Radiation

Research RF Safe Research Library Jan 1, 2025

This conference paper uses COMSOL Multiphysics simulations to evaluate thermal and SAR-based exposure limits for modeled human skin exposed to terahertz radiation (0.1–5 THz). The authors report negligible temperature increases at power densities consistent with keeping SAR below 1.6 W/kg, but note that higher power densities can yield minimal heating while producing SAR values above recognized safety thresholds. They conclude that existing sub-THz standards are not directly transferable to the full THz band and call for updated guidelines, especially for prolonged exposure.

Dosimetric Electromagnetic Safety of People With Implants: A Neglected Population?

Research RF Safe Research Library Jan 1, 2025

This dosimetric study evaluated whether existing EM safety guidelines protect individuals with conductive implants by assessing implant-related local field enhancements. Across 10 kHz to 1 GHz, the authors report large increases in psSAR10mg and local electric fields near implants, particularly below 100 MHz. In human anatomical models with implants exposed to an 85 kHz wireless power transfer coil and a 450 MHz dipole, the study reports guideline exceedances and elevated psSAR10mg, while the modeled temperature rise at 450 MHz remained under 0.4 K after six minutes. The authors conclude current guidelines are insufficient for people with implants and propose regulatory changes.

Numerical analysis of the thermal effects on adult with brain pacemaker implantation exposed to WIFI antennas

Research RF Safe Research Library Jan 1, 2025

This numerical study modeled RF exposure from WiFi/5G-type antennas near a 3D brain model with implanted brain pacemakers relevant to Parkinson’s disease. SAR and temperature increases were reported to remain below ICNIRP 2020 limits across modeled conditions, with maxima at a 90° antenna-to-brain angle. Despite compliance with SAR/temperature limits, the authors report modeled thermal strain and tissue displacement that could affect postoperative efficacy, leading them to recommend caution and increased distance from phones.

Assessment of Electromagnetic Exposure Levels for Humans from Electric Vehicle DC Charging Stations

Research RF Safe Research Library Jan 1, 2025

This simulation study modeled EMF exposure from an electric vehicle DC charging pile transformer using adult and child human models at several distances and for in-vehicle occupants during charging. Reported peak B-field and E-field values at 0.1 m and modeled internal exposures decreased with distance and remained below stated ICNIRP occupational and public limits. Frequency comparisons (85–95 kHz) indicated decreasing B-field with higher frequency while E-field stayed relatively stable. The authors note the need for real-world measurement validation and further assessment in sensitive populations and multi-source settings.

Evaluation of Exposure Assessment Methods and Procedures for Induction Hobs (Stoves)

Research RF Safe Research Library Jan 1, 2025

This exposure-assessment study evaluated magnetic-field and contact-current exposures from modern induction hobs using IEC-based measurement procedures, 3D field scanning, and numerical dosimetry in anatomical models. It reports large between-hob variability in exposure and states that IEC 62233 may substantially underestimate user exposure. The authors argue that design modifications can reduce exposure and that product standards should be revised to better reflect realistic user scenarios.

The effect of alpha-lipoic acid on liver damage induced by extremely low-frequency electromagnetic fields in a rat model

Research RF Safe Research Library Jan 1, 2025

This rat study assessed whether alpha-lipoic acid (ALA) modifies liver effects from extremely low-frequency magnetic field (ELF-MF) exposure. ELF-MF exposure (2 mT, 4 hours/day for 30 days) was associated with increased liver pathology and higher apoptosis markers (TUNEL, caspase-3) compared with other groups. ALA reduced several histopathological changes and lowered TUNEL/caspase-3, but did not improve fibrosis or biliary proliferation.

Assessment of spatial-average absorbed power density and peak temperature rise in skin model under localized electromagnetic exposure

Research RF Safe Research Library Jan 1, 2025

This numerical dosimetry study modeled localized RF exposure (3–30 GHz) in multi-layer human skin constructs including skin, fat, and muscle, with an added synthetic blood vessel model. Vascular modeling had negligible impact on peak spatial-averaged absorbed power density and a modest impact on peak temperature rise (about 8% at 3 GHz, <3% above 6 GHz). The authors conclude that including vasculature can refine predictions of localized thermal distributions for dosimetry accuracy.

Assessing exposure from different vehicular antennas in military applications: a computational study

Research RF Safe Research Library Jan 1, 2025

This computational study modeled electromagnetic exposure for military personnel near vehicular communication antennas across HF, VHF, and UHF scenarios. All simulated configurations reportedly met ICNIRP Basic Restrictions, though some exceeded ICNIRP Reference Levels in certain positioning and frequency combinations. The authors conclude that safety is generally maintained across the modeled conditions and that results can inform operational guidance and safety regulations.

In situ electric field dosimetry analysis for powerline frequency peripheral nerve magnetic stimulation

Research RF Safe Research Library Jan 1, 2025

This study used computational dosimetry to analyze induced electric fields in a realistic human body model for a 60 Hz magnetic-field exposure system targeting the leg. Simulations indicated high EF intensities in several leg nerves and modeled conditions consistent with possible peripheral nerve stimulation. The MRG model produced lower stimulation thresholds than the SENN model, and nerve orientation was reported as a key determinant of stimulation risk.

Magnetic effects in biology: Crucial role of quantum coherence in the radical pair mechanism

Research RF Safe Research Library Jan 1, 2025

This theoretical biophysics study models the radical pair mechanism as an open quantum system to derive an explicit dependence of magnetic-field effects on the spin coherence relaxation time (τ) and chemical kinetics (k). It reports a condition under which RPM effects become significant and estimates τ in cryptochrome-like proteins to be on the order of units to tens of nanoseconds. The paper also reports that nanoTesla-level radio-frequency fields have minor influence and are unlikely to disrupt RPM patterns under the modeled decoherence.

The modeling of the interaction of pulsed 5G/6G signals and the fine structure of human skin

Research RF Safe Research Library Jan 1, 2025

This paper uses advanced electromagnetic simulations of human skin microstructure to model exposure to realistic pulsed 5G/6G signals at 3.5, 27, 77, and 300 GHz. It reports localized, inhomogeneous absorption patterns linked to sweat glands and blood vessels, suggesting that treating skin as homogeneous may miss hotspots. The authors conclude that SAR-based standards may be inadequate for mmWave/sub-THz exposures and could underestimate potential risks, including possible nerve excitation.

Numerical Analysis of Human Head Exposure to Electromagnetic Radiation Due to 5G Mobile Phones

Research RF Safe Research Library Jan 1, 2025

This conference paper uses numerical simulations to evaluate near-field exposure and thermal effects in a detailed human head model from a realistic 5G mobile phone operating at 26 GHz. The preliminary modeling suggests moderate, localized temperature increases in superficial tissues. The authors emphasize the need for higher-resolution models, refined tissue segmentation, longer exposure durations, and varied phone placements to better characterize potential impacts.

Assessment of Electromagnetic Exposure to a Child and a Pregnant Woman Inside an Elevator in Mobile Frequencies

Research RF Safe Research Library Jan 1, 2025

This study uses anatomically detailed computational models of a five-year-old girl, a pregnant woman in the third trimester, and a fetus to simulate mobile phone RF exposure inside an elevator cabin. Simulations at 1000 MHz and 1800 MHz across 48 configurations evaluated SAR10g, whole-body SAR, and maximum temperature. The abstract reports that configuration (positioning and phone orientation) can substantially change absorption and temperature metrics and calls for broader scenario testing to inform safety guidance for vulnerable populations.

Cluster Analysis of RF-EMF Exposure to Detect Time Patterns in Urban Environment: A Model-Based Approach

Research RF Safe Research Library Jan 1, 2025

This paper applies a model-based clustering approach (Log-Normal Mixture Model) to continuous RF-EMF monitoring data from the Serbian EMF RATEL network in Novi Sad to characterize temporal exposure patterns. The analysis reports separation of night versus day exposure values and identification of daytime periods where exposure persists longer. The work is positioned as supporting improved understanding of when and where elevated exposures occur in urban environments.

Impact of Anthropomorphic Shape and Skin Stratification on Absorbed Power Density in mmWaves Exposure Scenarios

Research RF Safe Research Library Jan 1, 2025

This dosimetry study used FDTD simulations at 28 GHz to evaluate how skin stratification and anthropomorphic modeling affect absorbed power density (APD) estimates. APD was higher with stratified skin than with homogeneous skin for a wearable patch antenna (16%–30% higher), while plane-wave differences were smaller (<11%). The authors argue that simplified skin models may underestimate exposure in mmWave wearable scenarios.

← Prev Page 2 / 3 Next →