Archive

2 posts

Filters: category: vgic Clear

Electromagnetic hypersensitivity (EHS) is best understood as a variation in thresholds for detecting S4 cascade,

Independent Voices RF Safe Nov 13, 2025

RF Safe argues that non-native RF-EMF affects biology primarily through voltage-gated ion channels (VGICs), proposing an “Ion Forced Oscillation” model in which pulsed RF signal components influence the S4 voltage sensor and downstream cellular signaling. The post frames electromagnetic hypersensitivity (EHS) as a continuum of individual sensitivity thresholds to a proposed VGIC → mitochondrial ROS → immune activation cascade, rather than a distinct condition. It cites multiple external studies and reviews (including a WHO-commissioned animal review) to support a mechanistic narrative linking RF exposure to oxidative stress, inflammation, and certain tumor findings in rodents, but the article itself is a mechanistic/interpretive argument rather than original research.

Polarized, coherent fields with embedded extremely low-frequency (ELF) components

Independent Voices RF Safe Nov 13, 2025

RF Safe argues that non-thermal RF-EMF effects on biology may be driven by extremely low-frequency (ELF) components embedded in real-world, modulated wireless signals rather than by the RF carrier alone. The post highlights Panagopoulos’ ion-forced-oscillation (IFO) model as a proposed mechanism in which ELF-related ion motion could perturb voltage-gated ion channel (VGIC) gating and cascade into oxidative stress and immune effects. It cites a mix of supportive and null findings and frames electromagnetic hypersensitivity (EHS) as a threshold/phenotype within the same proposed VGIC–mitochondria–ROS pathway.

Page 1 / 1